mask2former-finetuned-ER-Mito-LD4
This model is a fine-tuned version of facebook/mask2former-swin-base-IN21k-ade-semantic on the Dnq2025/Mask2former_Pretrain dataset. It achieves the following results on the evaluation set:
- Loss: 33.8611
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 4
- eval_batch_size: 4
- seed: 1337
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: polynomial
- training_steps: 6450
Training results
Training Loss | Epoch | Step | Dummy | Validation Loss |
---|---|---|---|---|
53.0042 | 1.0 | 129 | 1.0 | 41.6702 |
41.5032 | 2.0 | 258 | 1.0 | 35.3152 |
37.8318 | 3.0 | 387 | 1.0 | 33.2929 |
33.1734 | 4.0 | 516 | 1.0 | 31.6052 |
31.0889 | 5.0 | 645 | 1.0 | 32.0792 |
30.5091 | 6.0 | 774 | 1.0 | 29.4252 |
27.7742 | 7.0 | 903 | 1.0 | 29.3660 |
27.1136 | 8.0 | 1032 | 1.0 | 28.6043 |
25.1614 | 9.0 | 1161 | 1.0 | 28.0848 |
24.7794 | 10.0 | 1290 | 1.0 | 28.1507 |
23.636 | 11.0 | 1419 | 1.0 | 28.3853 |
22.7494 | 12.0 | 1548 | 1.0 | 27.2592 |
22.7129 | 13.0 | 1677 | 1.0 | 29.8838 |
21.1747 | 14.0 | 1806 | 1.0 | 28.1624 |
20.9589 | 15.0 | 1935 | 1.0 | 27.9121 |
20.2591 | 16.0 | 2064 | 1.0 | 26.6467 |
20.1436 | 17.0 | 2193 | 1.0 | 26.9901 |
19.5047 | 18.0 | 2322 | 1.0 | 29.2895 |
18.4257 | 19.0 | 2451 | 1.0 | 27.0489 |
18.6316 | 20.0 | 2580 | 1.0 | 27.3730 |
18.037 | 21.0 | 2709 | 1.0 | 28.0853 |
17.6324 | 22.0 | 2838 | 1.0 | 26.6344 |
17.19 | 23.0 | 2967 | 1.0 | 28.1709 |
17.5784 | 24.0 | 3096 | 1.0 | 26.3646 |
16.3714 | 25.0 | 3225 | 1.0 | 28.6477 |
16.2177 | 26.0 | 3354 | 1.0 | 29.9328 |
15.8326 | 27.0 | 3483 | 1.0 | 27.1418 |
15.7345 | 28.0 | 3612 | 1.0 | 28.5265 |
14.918 | 29.0 | 3741 | 1.0 | 30.8378 |
15.2316 | 30.0 | 3870 | 1.0 | 28.5173 |
14.6576 | 31.0 | 3999 | 1.0 | 29.0688 |
14.5837 | 32.0 | 4128 | 1.0 | 29.7354 |
13.7819 | 33.0 | 4257 | 1.0 | 28.6140 |
14.851 | 34.0 | 4386 | 1.0 | 30.7131 |
14.1454 | 35.0 | 4515 | 1.0 | 29.3673 |
13.5445 | 36.0 | 4644 | 1.0 | 30.1412 |
13.3725 | 37.0 | 4773 | 1.0 | 29.7489 |
13.8976 | 38.0 | 4902 | 1.0 | 32.2482 |
13.2317 | 39.0 | 5031 | 1.0 | 33.3837 |
12.8382 | 40.0 | 5160 | 1.0 | 31.9261 |
12.8798 | 41.0 | 5289 | 1.0 | 31.0644 |
12.5615 | 42.0 | 5418 | 1.0 | 32.6052 |
12.4595 | 43.0 | 5547 | 1.0 | 32.6710 |
12.9861 | 44.0 | 5676 | 1.0 | 32.3271 |
12.3429 | 45.0 | 5805 | 1.0 | 33.1802 |
11.6031 | 46.0 | 5934 | 1.0 | 33.3981 |
12.7182 | 47.0 | 6063 | 1.0 | 33.2806 |
11.8251 | 48.0 | 6192 | 1.0 | 33.9491 |
12.4439 | 49.0 | 6321 | 1.0 | 33.4338 |
11.9834 | 50.0 | 6450 | 1.0 | 33.8444 |
Framework versions
- Transformers 4.50.0.dev0
- Pytorch 2.4.1
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support