File size: 4,027 Bytes
88131bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09c5b7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---

library_name: peft
license: other
base_model: Qwen/Qwen2.5-3B-Instruct
tags:
- axolotl
- generated_from_trainer
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
model-index:
- name: 9d122ead-3ae3-4958-85c8-6e51f0ea6d73
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml

adapter: lora

base_model: Qwen/Qwen2.5-3B-Instruct

bf16: auto

chat_template: llama3

dataset_prepared_path: null

datasets:

- data_files:

  - 60a7588018415c1f_train_data.json

  ds_type: json

  format: custom

  path: /workspace/input_data/60a7588018415c1f_train_data.json

  type:

    field_instruction: prompt

    field_output: ground_truth_chosen

    format: '{instruction}'

    no_input_format: '{instruction}'

    system_format: '{system}'

    system_prompt: ''

debug: null

deepspeed: null

early_stopping_patience: 1

eval_max_new_tokens: 128

eval_steps: 25

eval_table_size: null

flash_attention: false

fp16: false

fsdp: null

fsdp_config: null

gradient_accumulation_steps: 4

gradient_checkpointing: true

group_by_length: true

hub_model_id: Dnsx077/9d122ead-3ae3-4958-85c8-6e51f0ea6d73

hub_repo: null

hub_strategy: checkpoint

hub_token: null

learning_rate: 0.0002

load_in_4bit: false

load_in_8bit: false

local_rank: null

logging_steps: 1

lora_alpha: 32

lora_dropout: 0.05

lora_fan_in_fan_out: null

lora_model_dir: null

lora_r: 16

lora_target_linear: true

lr_scheduler: cosine

max_memory:

  0: 70GB

max_steps: 50

micro_batch_size: 2

mlflow_experiment_name: /tmp/60a7588018415c1f_train_data.json

model_type: AutoModelForCausalLM

num_epochs: 3

optimizer: adamw_torch

output_dir: miner_id_24

pad_to_sequence_len: true

resume_from_checkpoint: null

s2_attention: null

sample_packing: false

save_steps: 25

sequence_len: 4056

strict: false

tf32: false

tokenizer_type: AutoTokenizer

train_on_inputs: false

trust_remote_code: true

val_set_size: 0.05

wandb_entity: taoxminer-education

wandb_mode: online

wandb_name: 9d122ead-3ae3-4958-85c8-6e51f0ea6d73

wandb_project: Gradients-On-Demand

wandb_run: taoxminer

wandb_runid: 9d122ead-3ae3-4958-85c8-6e51f0ea6d73

warmup_ratio: 0.05

weight_decay: 0.01

xformers_attention: true



```

</details><br>

# 9d122ead-3ae3-4958-85c8-6e51f0ea6d73

This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1243

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002

- train_batch_size: 2

- eval_batch_size: 2

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2

- training_steps: 50

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.6172        | 0.0003 | 1    | 1.9064          |
| 1.3437        | 0.0067 | 25   | 1.1470          |
| 1.7072        | 0.0133 | 50   | 1.1243          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1