📖Introduction
LUFFY is a reinforcement learning framework that bridges the gap between zero-RL and imitation learning by incorporating off-policy reasoning traces into the training process. Built upon GRPO, LUFFY combines on-policy rollouts with off-policy demonstrations during advantage estimation and introduces policy shaping via regularized importance sampling to emphasize low-probability yet crucial actions.
Key Highlights:
- Off-Policy Guidance: Seamlessly integrates external reasoning traces to bootstrap learning from stronger models.
- Dynamic Balance: Learns when to imitate and when to explore, adapting over the course of training.
- Policy Shaping: Emphasizes important actions often ignored in standard policy gradients, enabling better generalization.
Inference
Here’s an example of using LUFFY for inference:
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
model_path="Elliott/LUFFY-Qwen-Math-7B-Zero"
question = "which number is larger? 9.11 or 9.9?"
tokenizer = AutoTokenizer.from_pretrained(model_path)
messages = [{"role": "user", "content": question}]
chat = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
llm = LLM(model=model_path)
params = SamplingParams(temperature=0.6, max_tokens=8192)
outputs = llm.generate([chat], params)
print(outputs[0].outputs[0].text)
📃Evaluation
Model | AIME 2024 | AIME 2025 | AMC | MATH-500 | Minerva | Olympiad | Avg. |
---|---|---|---|---|---|---|---|
Qwen2.5-7B-Instruct | 11.9 | 7.6 | 44.1 | 74.6 | 30.5 | 39.7 | 34.7 |
LUFFY-Qwen-Instruct-7B | 16.6 | 15.7 | 52.2 | 81.4 | 36.8 | 48.7 | 41.9 |
🌻Acknowledgement
LUFFY builds upon veRL and deepscaler, and utilizes vLLM for inference. We utilize Math-Verify for math reasoning evaluation. We thank the open-source community for datasets and backbones, including NuminaMath, OpenR1-Math-220k, Qwen2.5-Math, and DeepSeek-R1 model.
Code: https://github.com/ElliottYan/LUFFY
Citation
If you find our model, data, or evaluation code useful, please kindly cite our paper:
@misc{luffy,
title={Learning to Reason under Off-Policy Guidance},
author={Jianhao Yan and Yafu Li and Zican Hu and Zhi Wang and Ganqu Cui and Xiaoye Qu and Yu Cheng and Yue Zhang},
year={2025},
eprint={2504.14945},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2504.14945},
}
- Downloads last month
- 9