Feature Extraction
Transformers
Safetensors
English
Chinese
emova
Omni-modal-LLM
Multi-modal-LLM
Emotional-spoken-dialogue
custom_code
Eval Results
KaiChen1998 commited on
Commit
d76e1ba
·
verified ·
1 Parent(s): 9591baa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +294 -193
README.md CHANGED
@@ -1,199 +1,300 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - Omni-modal-LLM
5
+ - Multi-modal-LLM
6
+ - Emotional-spoken-dialogue
7
+ license: apache-2.0
8
+ datasets:
9
+ - Emova-ollm/temp
10
+ - Emova-ollm/emova-sft-4m
11
+ - Emova-ollm/emova-sft-speech-231k
12
+ language:
13
+ - en
14
+ - zh
15
+ base_model:
16
+ - Emova-ollm/qwen2vit600m
17
+ - Emova-ollm/Qwen2.5-72B-Instruct_add_speech_token_4096_nostrip
18
+ model-index:
19
+ - name: emova-qwen-2-5-72b-hf
20
+ results:
21
+ - task:
22
+ type: multimodal
23
+ dataset:
24
+ name: AI2D
25
+ type: ai2d
26
+ metrics:
27
+ - type: accuracy
28
+ value: 85.8
29
+ name: accuracy
30
+ verified: true
31
+ - task:
32
+ type: multimodal
33
+ dataset:
34
+ name: ChartQA
35
+ type: chartqa
36
+ metrics:
37
+ - type: accuracy
38
+ value: 88.7
39
+ name: accuracy
40
+ verified: true
41
+ - task:
42
+ type: multimodal
43
+ dataset:
44
+ name: DocVQA
45
+ type: docvqa
46
+ metrics:
47
+ - type: accuracy
48
+ value: 95.9
49
+ name: accuracy
50
+ verified: true
51
+ - task:
52
+ type: multimodal
53
+ dataset:
54
+ name: InfoVQA
55
+ type: infovqa
56
+ metrics:
57
+ - type: accuracy
58
+ value: 83.2
59
+ name: accuracy
60
+ verified: true
61
+ - task:
62
+ type: multimodal
63
+ dataset:
64
+ name: MathVerse
65
+ type: mathverse
66
+ metrics:
67
+ - type: accuracy
68
+ value: 50.0
69
+ name: accuracy
70
+ verified: true
71
+ - task:
72
+ type: multimodal
73
+ dataset:
74
+ name: MathVista
75
+ type: mathvista
76
+ metrics:
77
+ - type: accuracy
78
+ value: 69.9
79
+ name: accuracy
80
+ verified: true
81
+ - task:
82
+ type: multimodal
83
+ dataset:
84
+ name: MMBench
85
+ type: mmbench
86
+ metrics:
87
+ - type: accuracy
88
+ value: 86.4
89
+ name: accuracy
90
+ verified: true
91
+ - task:
92
+ type: multimodal
93
+ dataset:
94
+ name: MME
95
+ type: mme
96
+ metrics:
97
+ - type: score
98
+ value: 2402
99
+ name: score
100
+ verified: true
101
+ - task:
102
+ type: multimodal
103
+ dataset:
104
+ name: MMVet
105
+ type: mmvet
106
+ metrics:
107
+ - type: accuracy
108
+ value: 64.8
109
+ name: accuracy
110
+ verified: true
111
+ - task:
112
+ type: multimodal
113
+ dataset:
114
+ name: OCRBench
115
+ type: ocrbench
116
+ metrics:
117
+ - type: accuracy
118
+ value: 843
119
+ name: accuracy
120
+ verified: true
121
+ - task:
122
+ type: multimodal
123
+ dataset:
124
+ name: RealWorldQA
125
+ type: realworldqa
126
+ metrics:
127
+ - type: accuracy
128
+ value: 71.0
129
+ name: accuracy
130
+ verified: true
131
+ - task:
132
+ type: multimodal
133
+ dataset:
134
+ name: Seed-Bench-Image
135
+ type: seed-bench-image
136
+ metrics:
137
+ - type: accuracy
138
+ value: 76.6
139
+ name: accuracy
140
+ verified: true
141
+ - task:
142
+ type: multimodal
143
+ dataset:
144
+ name: Science-QA
145
+ type: science-qa
146
+ metrics:
147
+ - type: accuracy
148
+ value: 98.2
149
+ name: accuracy
150
+ verified: true
151
+ - task:
152
+ type: multimodal
153
+ dataset:
154
+ name: TextVQA
155
+ type: textvqa
156
+ metrics:
157
+ - type: accuracy
158
+ value: 81.4
159
+ name: accuracy
160
+ verified: true
161
+ - task:
162
+ name: Automatic Speech Recognition
163
+ type: automatic-speech-recognition
164
+ dataset:
165
+ name: LibriSpeech (clean)
166
+ type: librispeech_asr
167
+ config: clean
168
+ split: test
169
+ args:
170
+ language: en
171
+ metrics:
172
+ - name: Test WER
173
+ type: wer
174
+ value: 2.9
175
  ---
176
 
177
+ # EMOVA-Qwen-2.5-72B-HF
178
 
179
+ <div align="center">
180
+
181
+ <img src="https://emova-ollm.github.io/static/images/icons/emova_icon2.png" width="300em"></img>
182
 
183
+ 🤗 [EMOVA-Models](https://huggingface.co/collections/Emova-ollm/emova-models-67779d377bb8261e6057a320) | 🤗 [EMOVA-Datasets](https://huggingface.co/collections/Emova-ollm/emova-datasets-67779be7d02447a2d0891bf6) | 🤗 [EMOVA-Demo](https://huggingface.co/spaces/Emova-ollm/EMOVA-demo) <br/>
184
+ 📄 [Paper](https://arxiv.org/abs/2409.18042) | 🌐 [Project-Page](https://emova-ollm.github.io/) | 💻 [Github](https://github.com/emova-ollm/EMOVA) | 💻 [EMOVA-Speech-Tokenizer-Github](https://github.com/emova-ollm/EMOVA_speech_tokenizer)
185
+
186
+ </div>
187
+
188
+ ## Model Summary
189
+
190
+ **EMOVA** (**EM**otionally **O**mni-present **V**oice **A**ssistant) is a novel end-to-end omni-modal LLM that can see, hear and speak without relying on external models. Given the omni-modal (i.e., textual, visual and speech) inputs, EMOVA can generate both textual and speech responses with vivid emotional controls by utilizing the speech decoder together with a style encoder. EMOVA possesses general omni-modal understanding and generation capabilities, featuring its superiority in advanced vision-language understanding, emotional spoken dialogue, and spoken dialogue with structural data understanding. We summarize its key advantages as:
191
+
192
+ - **State-of-the-art omni-modality performance**: EMOVA achieves state-of-the-art comparable results on both **vision-language** and **speech** benchmarks simultaneously. Our best performing model, **EMOVA-72B**, even surpasses commercial models including GPT-4o and Gemini Pro 1.5.
193
+ - **Emotional spoken dialogue**: A **semantic-acoustic disentangled** speech tokenizer and a lightweight **style control** module are adopted for seamless omni-modal alignment and diverse speech style controllability. EMOVA supports **bilingual (Chinese and English)** spoken dialogue with **24 speech style** controls (i.e., 2 speakers, 3 pitches and 4 emotions).
194
+ - **Diverse configurations**: We open-source 3 configurations, **EMOVA-3B/7B/72B**, to support omni-modal usage under different computational budgets. Check our [Model Zoo](https://huggingface.co/collections/Emova-ollm/emova-models-67779d377bb8261e6057a320) and find the best fit model for your computational devices!
195
+
196
+ <div align="center">
197
+ <img src="https://emova-ollm.github.io/static/images/model_architecture.png" width=100%></img>
198
+ </div>
199
+
200
+
201
+ ## Performance
202
+
203
+
204
+ | Benchmarks | EMOVA-3B | EMOVA-7B | EMOVA-72B | GPT-4o | VITA 8x7B | VITA 1.5 | Baichuan-Omni |
205
+ |:------------------:|:-------: |:--------:|:---------:|:------:|:---------:|:--------:|:-------------:|
206
+ | **MME** | 2175 | 2317 | 2402 | 2310 | 2097 | 2311 | 2187 |
207
+ | **MMBench** | 79.2 | 83.0 | 86.4 | 83.4 | 71.8 | 76.6 | 76.2 |
208
+ | **SEED-Image** | 74.9 | 75.5 | 76.6 | 77.1 | 72.6 | 74.2 | 74.1 |
209
+ | **MM-Vet** | 57.3 | 59.4 | 64.8 | - | 41.6 | 51.1 | 65.4 |
210
+ | **RealWorldQA** | 62.6 | 67.5 | 71.0 | 75.4 | 59.0 | 66.8 | 62.6 |
211
+ | **TextVQA** | 77.2 | 78.0 | 81.4 | - | 71.8 | 74.9 | 74.3 |
212
+ | **ChartQA** | 81.5 | 84.9 | 88.7 | 85.7 | 76.6 | 79.6 | 79.6 |
213
+ | **DocVQA** | 93.5 | 94.2 | 95.9 | 92.8 | - | - | - |
214
+ | **InfoVQA** | 71.2 | 75.1 | 83.2 | - | - | - | - |
215
+ | **OCRBench** | 803 | 814 | 843 | 736 | 678 | 752 | 700 |
216
+ | **ScienceQA-Img** | 92.7 | 96.4 | 98.2 | - | - | - | - |
217
+ | **AI2D** | 78.6 | 81.7 | 85.8 | 84.6 | 73.1 | 79.3 | - |
218
+ | **MathVista** | 62.6 | 65.5 | 69.9 | 63.8 | 44.9 | 66.2 | 51.9 |
219
+ | **Mathverse** | 31.4 | 40.9 | 50.0 | - | - | - | - |
220
+ | **Librispeech (WER↓)** | 5.4 | 4.1 | 2.9 | - | 3.4 | 8.1 | - |
221
+
222
+
223
+ ## Usage
224
+
225
+ This repo contains the **EMOVA-Qwen2.5-72B** checkpoint organized in the **HuggingFace format**, and thus, can be directly loaded with **transformers Auto APIs**.
226
+
227
+ ```python
228
+ from transformers import AutoModel, AutoProcessor
229
+ from PIL import Image
230
+ import torch
231
+
232
+ ### Uncomment if you want to use Ascend NPUs
233
+ # import torch_npu
234
+ # from torch_npu.contrib import transfer_to_npu
235
+
236
+ # prepare models and processors
237
+ model = AutoModel.from_pretrained(
238
+ "Emova-ollm/emova-qwen-2-5-72b-hf",
239
+ torch_dtype=torch.bfloat16,
240
+ attn_implementation='flash_attention_2', # OR 'sdpa' for Ascend NPUs
241
+ low_cpu_mem_usage=True,
242
+ trust_remote_code=True).eval().cuda()
243
+ processor = AutoProcessor.from_pretrained("Emova-ollm/emova-qwen-2-5-72b-hf", trust_remote_code=True)
244
+
245
+ # only necessary for spoken dialogue
246
+ # Note to inference with speech inputs/outputs, **emova_speech_tokenizer** is still a necessary dependency (https://huggingface.co/Emova-ollm/emova_speech_tokenizer_hf#install).
247
+ speeck_tokenizer = AutoModel.from_pretrained("Emova-ollm/emova_speech_tokenizer_hf", torch_dtype=torch.float32, trust_remote_code=True).eval().cuda()
248
+ processor.set_speech_tokenizer(speeck_tokenizer)
249
+
250
+ # Example 1: image-text
251
+ inputs = dict(
252
+ text=[
253
+ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
254
+ {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What's shown in this image?"}]},
255
+ {"role": "assistant", "content": [{"type": "text", "text": "This image shows a red stop sign."}]},
256
+ {"role": "user", "content": [{"type": "text", "text": "Describe the image in more details."}]},
257
+ ],
258
+ images=Image.open('path/to/image')
259
+ )
260
+
261
+ # Example 2: text-audio
262
+ inputs = dict(
263
+ text=[{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}],
264
+ audios='path/to/audio'
265
+ )
266
+
267
+ # Example 3: image-text-audio
268
+ inputs = dict(
269
+ text=[{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}],
270
+ images=Image.open('path/to/image'),
271
+ audios='path/to/audio'
272
+ )
273
+
274
+ # run processors
275
+ has_speech = 'audios' in inputs.keys()
276
+ inputs = processor(**inputs, return_tensors="pt")
277
+ inputs = inputs.to(model.device)
278
+
279
+ # prepare generation arguments
280
+ gen_kwargs = {"max_new_tokens": 4096, "do_sample": False} # add if necessary
281
+ speech_kwargs = {"speaker": "female", "output_wav_prefix": "output"} if has_speech else {}
282
+
283
+ # run generation
284
+ # for speech outputs, we will return the saved wav paths (c.f., output_wav_prefix)
285
+ with torch.no_grad():
286
+ outputs = model.generate(**inputs, **gen_kwargs)
287
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
288
+ print(processor.batch_decode(outputs, skip_special_tokens=True, **speech_kwargs))
289
+ ```
290
+
291
+ ## Citation
292
+
293
+ ```bibtex
294
+ @article{chen2024emova,
295
+ title={Emova: Empowering language models to see, hear and speak with vivid emotions},
296
+ author={Chen, Kai and Gou, Yunhao and Huang, Runhui and Liu, Zhili and Tan, Daxin and Xu, Jing and Wang, Chunwei and Zhu, Yi and Zeng, Yihan and Yang, Kuo and others},
297
+ journal={arXiv preprint arXiv:2409.18042},
298
+ year={2024}
299
+ }
300
+ ```