emova-anonymous commited on
Commit
50f4c1b
·
1 Parent(s): 6017406

add readme

Browse files
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ __pycache__
2
+ .ipynb_checkpoints
3
+ *.egg-info
README.md CHANGED
@@ -3,197 +3,63 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
39
 
40
- ### Direct Use
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ # EMOVA Speech Tokenizer HF
7
 
8
+ ## Model Summary
9
 
10
+ This repo contains the discrete speech tokenizer used to train the [EMOVA](https://emova-ollm.github.io/) series of models. With a semantic-acoustic disentangled design, it not only facilitates seamless omni-modal alignment among vision, language and audio modalities, but also empowers flexible speech style controls including emotions and pitches. It contains a **speech-to-unit (S2U)** tokenizer to convert speech signals to discrete speech units, and a **unit-to-speech (U2S)** de-tokenizer to reconstruct speech signals from the speech units.
11
 
12
+ This repo wraps the original [EMOVA speech tokenizer](https://huggingface.co/Emova-ollm/emova_speech_tokenizer) with HuggingFace [PreTrainedModel](https://huggingface.co/docs/transformers/v4.47.1/main_classes/model#transformers.PreTrainedModel) for simpler usage.
13
 
14
+ ## Install
15
 
16
+ ```bash
17
+ git clone https://huggingface.co/Emova-ollm/emova_speech_tokenizer
18
+ cd emova_speech_tokenizer
19
 
20
+ # for GPU
21
+ pip install -e .
22
 
23
+ # for NPU
24
+ # check https://github.com/Ascend/pytorch?tab=readme-ov-file#installation for detailed installation of torch npu
25
+ pip install -e .[npu]
26
+ ```
27
 
28
+ ## Usage
 
 
 
 
 
 
29
 
30
+ ```diff
31
+ import torch
32
+ +import torch_npu # add it if you want to use NPU
33
+ +from torch_npu.contrib import transfer_to_npu # add it if you want to use NPU
34
 
35
+ from transformers import AutoModel
36
 
37
+ # load pretrained model
38
+ model = AutoModel.from_pretrained("Emova-ollm/emova_speech_tokenizer", torch_dtype=torch.float32, trust_remote_code=True).eval().cuda()
 
39
 
40
+ # S2U
41
+ wav_file = "./examples/s2u/example.wav"
42
+ speech_unit = model.encode(wav_file)
43
+ print(speech_unit)
44
 
45
+ # U2S
46
+ emotion = random.choice(['angry', 'happy', 'neutral', 'sad'])
47
+ speed = random.choice(['normal', 'fast', 'slow'])
48
+ pitch = random.choice(['normal', 'high', 'low'])
49
+ gender = random.choice(['female', 'male'])
50
+ condition = f'gender-{gender}_emotion-{emotion}_speed-{speed}_pitch-{pitch}'
51
 
52
+ output_wav_file = f'./examples/u2s/{condition}_output.wav'
53
+ model.decode(speech_unit, condition=condition, output_wav_file=output_wav_file)
54
+ ```
55
 
56
+ ## Citation
57
 
58
+ ```bibtex
59
+ @article{chen2024emova,
60
+ title={Emova: Empowering language models to see, hear and speak with vivid emotions},
61
+ author={Chen, Kai and Gou, Yunhao and Huang, Runhui and Liu, Zhili and Tan, Daxin and Xu, Jing and Wang, Chunwei and Zhu, Yi and Zeng, Yihan and Yang, Kuo and others},
62
+ journal={arXiv preprint arXiv:2409.18042},
63
+ year={2024}
64
+ }
65
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/s2u/example.wav ADDED
Binary file (106 kB). View file
 
examples/u2s/gender-female_emotion-neutral_speed-normal_pitch-normal_output.wav ADDED
Binary file (263 kB). View file