Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: EleutherAI/pythia-1b
bf16: auto
datasets:
- data_files:
  - cf3a451ad5f57e3e_train_data.json
  ds_type: json
  format: custom
  path: cf3a451ad5f57e3e_train_data.json
  type:
    field: null
    field_input: original_code
    field_instruction: update_snippet
    field_output: final_code
    field_system: null
    format: null
    no_input_format: null
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_sample_packing: false
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: FatCat87/7d2f4acd-ec41-4940-b17f-5ffb945afa24
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: ./outputs/out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
seed: 701
sequence_len: 4096
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0.1
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: 7d2f4acd-ec41-4940-b17f-5ffb945afa24
wandb_project: subnet56
wandb_runid: 7d2f4acd-ec41-4940-b17f-5ffb945afa24
wandb_watch: null
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null

Visualize in Weights & Biases

7d2f4acd-ec41-4940-b17f-5ffb945afa24

This model is a fine-tuned version of EleutherAI/pythia-1b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0526

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 701
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
4.2604 0.0075 1 0.9479
1.8401 0.2547 34 0.1403
0.1249 0.5094 68 0.0728
0.0707 0.7640 102 0.0526

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for FatCat87/7d2f4acd-ec41-4940-b17f-5ffb945afa24

Adapter
(277)
this model