This model has been 4-bit quantized Llada-8B-Base model with GPTQModel.
- bits: 4
- dynamic: null
- group_size: 128
- desc_act: true
- static_groups: false
- sym: false
- lm_head: false
- true_sequential: true
- quant_method: "gptq"
- checkpoint_format: "gptq"
- meta๏ผ
- quantizer: gptqmodel:1.1.0
- uri: https://github.com/modelcloud/gptqmodel
- damp_percent: 0.1
- damp_auto_increment: 0.0015
Example:
# Copyright 2024-2025 ModelCloud.ai
# Copyright 2024-2025 [email protected]
# Contact: [email protected], x.com/qubitium
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from datasets import load_dataset
from gptqmodel import GPTQModel, QuantizeConfig, BACKEND
from gptqmodel.models.base import BaseGPTQModel
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
from gptqmodel.models.auto import MODEL_MAP
import torch.nn.functional as F
import numpy as np
pretrained_model_id = '/home/chentianqi/model/GSAI-ML/LLaDA-8B-Instruct' # "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
quantized_model_id = "FunAGI/LLaDA-8B-Instruct-gptqmodel-4bit"
class LladaGPTQ(BaseGPTQModel):
# Non-repeating layers at the root level: same level as `layers_node`
# Excluding `layers_node`.
base_modules = ["model.transformer.wte", "model.transformer.ln_f"]
pre_lm_head_norm_module = "model.transformer.ln_f"
lm_head = "model.transformer.ff_out"
# Below describes all the repeating layers in this transformer model
# `model.layers` is a node/module that hold all the repeating layers. The parent node for all n-layers.
layers_node = "model.transformer.blocks"
# Each repeating layer in `model.layers` is of type `LlamaDecoderLayer`
layer_type = "LLaDALlamaBlock"
# Inside each `LlamaDecoderLayer` layer are many internal modules
# List them in the order executed in model forward() code
# Many models have same execution order of: attention (q_k_v) projection, attention (output) projection, mlp (n) projections
layer_modules = [
["attn_out", "k_proj", "v_proj", "q_proj"],
["ff_proj", "up_proj"],
["ff_out"],
]
MODEL_MAP ["llada"] = LladaGPTQ
# os.makedirs(quantized_model_dir, exist_ok=True)
def get_wikitext2(tokenizer, nsamples, seqlen):
traindata = load_dataset("wikitext", "wikitext-2-raw-v1", split="train").filter(
lambda x: len(x["text"]) >= seqlen)
return [tokenizer(example["text"]) for example in traindata.select(range(nsamples))]
@torch.no_grad()
def calculate_avg_ppl(model, tokenizer):
from gptqmodel.utils import Perplexity
ppl = Perplexity(
model=model,
tokenizer=tokenizer,
dataset_path="wikitext",
dataset_name="wikitext-2-raw-v1",
split="train",
text_column="text",
)
all = ppl.calculate(n_ctx=512, n_batch=512)
# average ppl
avg = sum(all) / len(all)
return avg
dynamic = {
}
def add_gumbel_noise(logits, temperature):
'''
The Gumbel max is a method for sampling categorical distributions.
According to arXiv:2409.02908, for MDM, low-precision Gumbel Max improves perplexity score but reduces generation quality.
Thus, we use float64.
'''
logits = logits.to(torch.float64)
noise = torch.rand_like(logits, dtype=torch.float64)
gumbel_noise = (- torch.log(noise)) ** temperature
return logits.exp() / gumbel_noise
def get_num_transfer_tokens(mask_index, steps):
'''
In the reverse process, the interval [0, 1] is uniformly discretized into steps intervals.
Furthermore, because LLaDA employs a linear noise schedule (as defined in Eq. (8)),
the expected number of tokens transitioned at each step should be consistent.
This function is designed to precompute the number of tokens that need to be transitioned at each step.
'''
mask_num = mask_index.sum(dim=1, keepdim=True) #
base = mask_num // steps
remainder = mask_num % steps
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.int64) + base
for i in range(mask_num.size(0)):
num_transfer_tokens[i, :remainder[i]] += 1
return num_transfer_tokens
def forward_process(batch, prompt_index, mask_id):
b, l = batch.shape
target_len = (l - prompt_index.sum()).item()
k = torch.randint(1, target_len + 1, (), device=batch.device)
x = torch.round(torch.linspace(float(k), k + (b - 1) * (target_len / b), steps=b, device=batch.device)).long()
x = ((x - 1) % target_len) + 1
assert x.min() >= 1 and x.max() <= target_len
indices = torch.arange(target_len, device=batch.device).repeat(b, 1)
is_mask = indices < x.unsqueeze(1)
for i in range(b):
is_mask[i] = is_mask[i][torch.randperm(target_len)]
is_mask = torch.cat((torch.zeros(b, prompt_index.sum(), dtype=torch.bool, device=batch.device), is_mask), dim=1)
noisy_batch = torch.where(is_mask, mask_id, batch)
# Return the masked batch and the mask ratio
return noisy_batch, (x / target_len).unsqueeze(1).repeat(1, l)
def get_logits(model, batch, prompt_index, cfg_scale, mask_id):
if cfg_scale > 0.:
assert len(prompt_index) == batch.shape[1]
prompt_index = prompt_index.unsqueeze(0).repeat(batch.shape[0], 1)
un_batch = batch.clone()
un_batch[prompt_index] = mask_id
batch = torch.cat([batch, un_batch])
input = batch
logits = model(input).logits
if cfg_scale > 0.:
logits, un_logits = torch.chunk(logits, 2, dim=0)
logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
return logits
@ torch.no_grad()
def get_log_likelihood(model, prompt, answer, mc_num=128, batch_size=32, cfg_scale=0., mask_id=126336):
'''
Args:
model: Mask predictor.
prompt: A tensor of shape (l1).
answer: A tensor of shape (l2).
mc_num: Monte Carlo estimation times.
As detailed in Appendix B.5. Since MMLU, CMMLU, and C-EVAL only require the likelihood of a single token, a
single Monte Carlo estimate is sufficient for these benchmarks. For all other benchmarks, we find that 128
Monte Carlo samples are adequate to produce stable results.
batch_size: Mini batch size.
cfg_scale: Unsupervised classifier-free guidance scale.
mask_id: The toke id of [MASK] is 126336.
'''
seq = torch.concatenate([prompt, answer])[None, :]
seq = seq.repeat((batch_size, 1)).to(model.device)
prompt_index = torch.arange(seq.shape[1], device=model.device) < len(prompt)
loss_ = []
for _ in range(mc_num // batch_size):
perturbed_seq, p_mask = forward_process(seq, prompt_index, mask_id)
mask_index = perturbed_seq == mask_id
logits = get_logits(model, perturbed_seq, prompt_index, cfg_scale, mask_id)
loss = F.cross_entropy(logits[mask_index], seq[mask_index], reduction='none') / p_mask[mask_index]
loss = loss.sum() / batch_size
loss_.append(loss.item())
return - sum(loss_) / len(loss_)
@ torch.no_grad()
def generate(model, prompt, steps=128, gen_length=128, block_length=128, temperature=0.,
cfg_scale=0., remasking='low_confidence', mask_id=126336):
'''
Args:
model: Mask predictor.
prompt: A tensor of shape (1, l).
steps: Sampling steps, less than or equal to gen_length.
gen_length: Generated answer length.
block_length: Block length, less than or equal to gen_length. If less than gen_length, it means using semi_autoregressive remasking.
temperature: Categorical distribution sampling temperature.
cfg_scale: Unsupervised classifier-free guidance scale.
remasking: Remasking strategy. 'low_confidence' or 'random'.
mask_id: The toke id of [MASK] is 126336.
'''
x = torch.full((1, prompt.shape[1] + gen_length), mask_id, dtype=torch.long).to(model.device)
x[:, :prompt.shape[1]] = prompt.clone()
prompt_index = (x != mask_id)
assert gen_length % block_length == 0
num_blocks = gen_length // block_length
assert steps % num_blocks == 0
steps = steps // num_blocks
for num_block in range(num_blocks):
block_mask_index = (x[:, prompt.shape[1] + num_block * block_length: prompt.shape[1] + (num_block + 1) * block_length:] == mask_id)
num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps)
for i in range(steps):
mask_index = (x == mask_id)
if cfg_scale > 0.:
un_x = x.clone()
un_x[prompt_index] = mask_id
x_ = torch.cat([x, un_x], dim=0)
logits = model(x_).logits
logits, un_logits = torch.chunk(logits, 2, dim=0)
logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
else:
logits = model(x).logits
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
x0 = torch.argmax(logits_with_noise, dim=-1) # b, l
if remasking == 'low_confidence':
p = F.softmax(logits.to(torch.float64), dim=-1)
x0_p = torch.squeeze(
torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1) # b, l
elif remasking == 'random':
x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
else:
raise NotImplementedError(remasking)
x0_p[:, prompt.shape[1] + (num_block + 1) * block_length:] = -np.inf
x0 = torch.where(mask_index, x0, x)
confidence = torch.where(mask_index, x0_p, -np.inf)
transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
for j in range(confidence.shape[0]):
_, select_index = torch.topk(confidence[j], k=num_transfer_tokens[j, i])
transfer_index[j, select_index] = True
x[transfer_index] = x0[transfer_index]
return x
def main():
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_id, use_fast=False)
traindataset = get_wikitext2(tokenizer, nsamples=128, seqlen=1024)
quantize_config = QuantizeConfig(
dynamic=dynamic,
bits=8, # quantize model to 4-bit
group_size=128, # it is recommended to set the value to 128,
desc_act = True,
sym=False
)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
prompt = "Lily can run 12 kilometers per hour for 4 hours. After that, she runs 6 kilometers per hour. How many kilometers can she run in 8 hours?"
# # Add special tokens for the Instruct model. The Base model does not require the following two lines.
m = [{"role": "user", "content": prompt}, ]
prompt = tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
input_ids = tokenizer(prompt)['input_ids']
input_ids = torch.tensor(input_ids).to(device).unsqueeze(0)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = GPTQModel.load(quantized_model_id, device=device , trust_remote_code=True )
steps=128
out = generate(model, input_ids, steps=steps , gen_length=128, block_length=32, temperature=0., cfg_scale=0., remasking='low_confidence')
print("*"*30+ f"GPTQ-4bit Steps {steps}"+ "*"*30)
print(input_ids.shape)
print( tokenizer.batch_decode(out[:, input_ids.shape[1]:], skip_special_tokens=True)[0])
del model
model =AutoModel.from_pretrained(pretrained_model_id, trust_remote_code=True ).cuda()
out = generate(model, input_ids, steps=steps , gen_length=128, block_length=32, temperature=0., cfg_scale=0., remasking='low_confidence')
print("*"*30+ f"FP16 Steps {steps}"+ "*"*30)
print(input_ids.shape)
print( tokenizer.batch_decode(out[:, input_ids.shape[1]:], skip_special_tokens=True)[0])
if __name__ == "__main__":
import logging
logging.basicConfig(
format="%(asctime)s %(levelname)s [%(name)s] %(message)s",
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S",
)
main()
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for FunAGI/LLaDA-8B-Instruct-gptqmodel-4bit
Base model
GSAI-ML/LLaDA-8B-Instruct