BERTopic_andattakstruk_2
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("GiganticLemon/BERTopic_andattakstruk_2")
topic_model.get_topic_info()
Topic overview
- Number of topics: 62
- Number of training documents: 16559
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | the - and - to - of - in | 21 | -1_the_and_to_of |
0 | the - to - of - and - is | 8983 | 0_the_to_of_and |
1 | the - to - that - he - and | 1232 | 1_the_to_that_he |
2 | her - she - to - and - is | 605 | 2_her_she_to_and |
3 | and - the - of - to - in | 506 | 3_and_the_of_to |
4 | the - of - earth - to - and | 473 | 4_the_of_earth_to |
5 | the - and - to - he - his | 459 | 5_the_and_to_he |
6 | the - and - to - of - ship | 416 | 6_the_and_to_of |
7 | the - to - of - and - his | 370 | 7_the_to_of_and |
8 | de - his - he - to - the | 306 | 8_de_his_he_to |
9 | her - she - to - and - is | 192 | 9_her_she_to_and |
10 | chinese - the - and - of - to | 160 | 10_chinese_the_and_of |
11 | the - president - soviet - of - us | 150 | 11_the_president_soviet_of |
12 | russian - the - his - to - of | 145 | 12_russian_the_his_to |
13 | asterix - roman - obelix - the - rome | 141 | 13_asterix_roman_obelix_the |
14 | doctor - tardis - the - ace - to | 140 | 14_doctor_tardis_the_ace |
15 | of - that - the - in - or | 138 | 15_of_that_the_in |
16 | socrates - theseus - the - of - and | 130 | 16_socrates_theseus_the_of |
17 | vampire - vampires - darren - sookie - to | 111 | 17_vampire_vampires_darren_sookie |
18 | kirk - enterprise - spock - federation - klingon | 111 | 18_kirk_enterprise_spock_federation |
19 | reacher - hardy - frank - boys - hardys | 101 | 19_reacher_hardy_frank_boys |
20 | cadfael - his - the - to - of | 99 | 20_cadfael_his_the_to |
21 | jedi - vong - luke - leia - han | 87 | 21_jedi_vong_luke_leia |
22 | german - szpilman - hitler - was - the | 78 | 22_german_szpilman_hitler_was |
23 | jesus - judah - god - of - the | 78 | 23_jesus_judah_god_of |
24 | animorphs - jake - visser - ax - cassie | 67 | 24_animorphs_jake_visser_ax |
25 | spirou - fantasio - champignac - count - marsupilami | 66 | 25_spirou_fantasio_champignac_count |
26 | henson - white - black - the - slaves | 57 | 26_henson_white_black_the |
27 | novel - of - his - in - book | 56 | 27_novel_of_his_in |
28 | dawkins - of - that - science - religion | 55 | 28_dawkins_of_that_science |
29 | obiwan - jedi - quigon - kenobi - anakin | 52 | 29_obiwan_jedi_quigon_kenobi |
30 | cats - clan - thunderclan - kits - firestar | 48 | 30_cats_clan_thunderclan_kits |
31 | redwall - abbey - the - and - vermin | 48 | 31_redwall_abbey_the_and |
32 | virus - the - to - is - of | 47 | 32_virus_the_to_is |
33 | buffy - sunnydale - willow - slayer - giles | 46 | 33_buffy_sunnydale_willow_slayer |
34 | time - machine - traveller - in - the | 44 | 34_time_machine_traveller_in |
35 | confederate - lee - scarlett - rhett - the | 38 | 35_confederate_lee_scarlett_rhett |
36 | bond - bonds - to - leiter - by | 37 | 36_bond_bonds_to_leiter |
37 | baseball - hobbs - game - team - belichick | 37 | 37_baseball_hobbs_game_team |
38 | sharpe - scene - french - sharpes - harper | 36 | 38_sharpe_scene_french_sharpes |
39 | nancy - bess - nancys - george - mystery | 33 | 39_nancy_bess_nancys_george |
40 | women - of - ellador - men - in | 33 | 40_women_of_ellador_men |
41 | manticore - sten - haven - fleet - honor | 32 | 41_manticore_sten_haven_fleet |
42 | billy - john - horse - ranch - harold | 31 | 42_billy_john_horse_ranch |
43 | global - warming - climate - energy - carbon | 30 | 43_global_warming_climate_energy |
44 | christmas - claus - santa - roger - mimi | 30 | 44_christmas_claus_santa_roger |
45 | holmes - sherlock - watson - douglas - that | 29 | 45_holmes_sherlock_watson_douglas |
46 | tarzan - ape - lion - tarzans - opar | 28 | 46_tarzan_ape_lion_tarzans |
47 | conan - conans - dake - aquilonia - raseri | 28 | 47_conan_conans_dake_aquilonia |
48 | angel - angels - quillon - archangel - alleluia | 27 | 48_angel_angels_quillon_archangel |
49 | lone - wolf - kai - magnamund - darklords | 27 | 49_lone_wolf_kai_magnamund |
50 | helm - matt - helms - mac - agency | 27 | 50_helm_matt_helms_mac |
51 | dorothy - oz - elphaba - wizard - ozma | 27 | 51_dorothy_oz_elphaba_wizard |
52 | max - fang - flock - roland - victor | 26 | 52_max_fang_flock_roland |
53 | tom - swift - mr - airship - toms | 25 | 53_tom_swift_mr_airship |
54 | tintin - haddock - calculus - snowy - the | 25 | 54_tintin_haddock_calculus_snowy |
55 | robot - robots - derec - ariel - city | 23 | 55_robot_robots_derec_ariel |
56 | bertie - jeeves - emsworth - gally - freddie | 23 | 56_bertie_jeeves_emsworth_gally |
57 | alex - sarov - alexs - mi6 - to | 23 | 57_alex_sarov_alexs_mi6 |
58 | carson - rayford - tribulation - carpathia - buck | 22 | 58_carson_rayford_tribulation_carpathia |
59 | dresden - harry - thomas - murphy - dresdens | 22 | 59_dresden_harry_thomas_murphy |
60 | brigitta - major - life - novel - of | 22 | 60_brigitta_major_life_novel |
Training hyperparameters
- calculate_probabilities: False
- language: english
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: None
- seed_topic_list: None
- top_n_words: 10
- verbose: True
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 2.0.2
- HDBSCAN: 0.8.40
- UMAP: 0.5.7
- Pandas: 2.2.2
- Scikit-Learn: 1.6.1
- Sentence-transformers: 3.4.1
- Transformers: 4.51.3
- Numba: 0.60.0
- Plotly: 5.24.1
- Python: 3.11.12
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support