Model Name: TrOCR Fine-Tuned on Custom Dataset
This model is a fine-tuned version of Microsoft's TrOCR
on a custom dataset for handwritten text extraction from scanned documents.
π§ Model Architecture
- Base model: Microsoft TrOCR (base)
- Used with: CRAFT for text detection
- Fine-tuned with: OCR-specific dataset
π Files in this repository:
pytorch_model.bin
: Model weights (2.1 GB)config.json
,tokenizer_config.json
, etc.- Training and evaluation scripts (optional)
π How to Use
from transformers import VisionEncoderDecoderModel, TrOCRProcessor
from PIL import Image
import torch
# Load processor and model
processor = TrOCRProcessor.from_pretrained("Gitesh2003/MESA_TrOCR")
model = VisionEncoderDecoderModel.from_pretrained("Gitesh2003/MESA_TrOCR")
# Load image
image = Image.open("sample_image.jpg").convert("RGB")
# OCR
pixel_values = processor(images=image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_text)
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support