mt5-base-cnn_then_norsumm

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8705
  • Rouge1: 30.0222
  • Rouge2: 12.8189
  • Rougel: 22.7383
  • Rougelsum: 26.5718

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.5087 1.0 18 3.0861 27.0039 9.4951 19.8448 24.6014
2.5952 2.0 36 3.0623 28.0269 9.9808 20.5307 25.5142
2.6155 3.0 54 3.0309 28.7776 9.5968 20.5973 25.3272
2.6171 4.0 72 3.0298 28.458 10.1857 20.6671 25.4602
2.5156 5.0 90 3.0293 29.1667 11.0558 21.6151 26.3694

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
110
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support