File size: 2,221 Bytes
3b4dcbc
 
88e7210
 
3b4dcbc
bc20c58
3b4dcbc
 
 
88e7210
3b4dcbc
 
 
88e7210
3b4dcbc
 
 
 
 
88e7210
 
3b4dcbc
 
88e7210
3b4dcbc
 
 
bc20c58
3b4dcbc
 
88e7210
 
3b4dcbc
88e7210
3b4dcbc
bc20c58
88e7210
bc20c58
 
3b4dcbc
88e7210
3b4dcbc
88e7210
3b4dcbc
88e7210
3b4dcbc
88e7210
3b4dcbc
88e7210
3b4dcbc
88e7210
 
 
 
 
 
 
bc20c58
88e7210
 
 
 
 
 
 
bc20c58
 
88e7210
 
 
3b4dcbc
88e7210
 
bc20c58
 
 
 
3b4dcbc
 
88e7210
3b4dcbc
88e7210
 
7027aad
88e7210
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: transformers
language:
- ur
license: apache-2.0
base_model: GogetaBlueMUI/whisper-medium-ur-v3
tags:
- generated_from_trainer
datasets:
- fsicoli/common_voice_19_0
metrics:
- wer
model-index:
- name: Whisper Medium Ur - Your Name
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 19.0
      type: fsicoli/common_voice_19_0
      config: ur
      split: test
      args: 'config: ur, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 25.0787058744725
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium Ur - Your Name

This model is a fine-tuned version of [GogetaBlueMUI/whisper-medium-ur-v3](https://huggingface.co/GogetaBlueMUI/whisper-medium-ur-v3) on the Common Voice 19.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3692
- Wer: 25.0787

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.1648        | 0.3279 | 250  | 0.3832          | 28.1711 |
| 0.1748        | 0.6557 | 500  | 0.3737          | 30.1650 |
| 0.1887        | 0.9836 | 750  | 0.3587          | 24.8532 |
| 0.132         | 1.3108 | 1000 | 0.3692          | 25.0787 |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.5.1+cu121
- Datasets 3.4.1
- Tokenizers 0.21.0