File size: 2,221 Bytes
3b4dcbc 88e7210 3b4dcbc bc20c58 3b4dcbc 88e7210 3b4dcbc 88e7210 3b4dcbc 88e7210 3b4dcbc 88e7210 3b4dcbc bc20c58 3b4dcbc 88e7210 3b4dcbc 88e7210 3b4dcbc bc20c58 88e7210 bc20c58 3b4dcbc 88e7210 3b4dcbc 88e7210 3b4dcbc 88e7210 3b4dcbc 88e7210 3b4dcbc 88e7210 3b4dcbc 88e7210 bc20c58 88e7210 bc20c58 88e7210 3b4dcbc 88e7210 bc20c58 3b4dcbc 88e7210 3b4dcbc 88e7210 7027aad 88e7210 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
library_name: transformers
language:
- ur
license: apache-2.0
base_model: GogetaBlueMUI/whisper-medium-ur-v3
tags:
- generated_from_trainer
datasets:
- fsicoli/common_voice_19_0
metrics:
- wer
model-index:
- name: Whisper Medium Ur - Your Name
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 19.0
type: fsicoli/common_voice_19_0
config: ur
split: test
args: 'config: ur, split: test'
metrics:
- name: Wer
type: wer
value: 25.0787058744725
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Ur - Your Name
This model is a fine-tuned version of [GogetaBlueMUI/whisper-medium-ur-v3](https://huggingface.co/GogetaBlueMUI/whisper-medium-ur-v3) on the Common Voice 19.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3692
- Wer: 25.0787
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.1648 | 0.3279 | 250 | 0.3832 | 28.1711 |
| 0.1748 | 0.6557 | 500 | 0.3737 | 30.1650 |
| 0.1887 | 0.9836 | 750 | 0.3587 | 24.8532 |
| 0.132 | 1.3108 | 1000 | 0.3692 | 25.0787 |
### Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu121
- Datasets 3.4.1
- Tokenizers 0.21.0
|