Inhasw's picture
Model save
e2fd845 verified
metadata
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-small-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-small-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8471810089020771

swin-small-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-small-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5541
  • Accuracy: 0.8472

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.8572 1.0 48 2.6775 0.2226
1.6357 2.0 96 1.3411 0.5519
1.076 3.0 144 0.9200 0.6973
1.0091 4.0 192 0.8266 0.7062
0.777 5.0 240 0.6904 0.7685
0.6453 6.0 288 0.6149 0.7864
0.6124 7.0 336 0.6207 0.7923
0.5204 8.0 384 0.6130 0.7908
0.529 9.0 432 0.6334 0.8042
0.4394 10.0 480 0.5370 0.8249
0.4398 11.0 528 0.5589 0.8249
0.3996 12.0 576 0.5391 0.8501
0.3585 13.0 624 0.5796 0.8205
0.3276 14.0 672 0.5851 0.8338
0.3382 15.0 720 0.5508 0.8457
0.3212 16.0 768 0.5279 0.8605
0.3226 17.0 816 0.5769 0.8338
0.2836 18.0 864 0.5942 0.8294
0.2743 19.0 912 0.5862 0.8309
0.2637 20.0 960 0.5586 0.8234
0.2567 21.0 1008 0.5335 0.8427
0.2932 22.0 1056 0.5653 0.8383
0.2532 23.0 1104 0.5493 0.8368
0.2286 24.0 1152 0.5798 0.8383
0.206 25.0 1200 0.5623 0.8487
0.2288 26.0 1248 0.5566 0.8442
0.2059 27.0 1296 0.5437 0.8457
0.1904 28.0 1344 0.5500 0.8338
0.2416 29.0 1392 0.5563 0.8487
0.1967 29.3789 1410 0.5541 0.8472

Framework versions

  • Transformers 4.50.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1