Llama-3_1-Nemotron-Ultra-253B-v1-W8A8-Dynamic
SmoothQuant/GPTQ W8A8 quantization of https://huggingface.co/nvidia/Llama-3_1-Nemotron-Ultra-253B-v1
Creation
Created with llmcompressor using the following code:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map
import random
# Config
MODEL_ID = "/models/Llama-3_1-Nemotron-Ultra-253B-v1"
SAVE_DIR = "/models/Llama-3_1-Nemotron-Ultra-253B-v1-W8A8-Dynamic"
NUM_CALIBRATION_SAMPLES = 1024
MAX_SEQUENCE_LENGTH = 4096
# Load model
device_map = calculate_offload_device_map(
MODEL_ID, num_gpus=8, reserve_for_hessians=False, torch_dtype="auto", trust_remote_code=True,
)
print(device_map)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map=device_map, torch_dtype="auto", trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# Load and preprocess the dataset
ds = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft")
ds = ds.shuffle(seed=1337).select(range(NUM_CALIBRATION_SAMPLES))
def add_system_prompt(messages):
options = ["on", "off"]
thinking = random.choice(options)
return [{"content": f"detailed thinking {thinking}", "role": "system"}] + messages
def preprocess(example):
return {"text": tokenizer.apply_chat_template(add_system_prompt(example["messages"]), tokenize=False)}
ds = ds.map(preprocess)
def tokenize(sample):
return tokenizer(sample["text"], padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False)
ds = ds.map(tokenize, remove_columns=ds.column_names)
# Configure the quantization algorithms
recipe = [
SmoothQuantModifier(smoothing_strength=0.8),
GPTQModifier(targets="Linear", scheme="W8A8", ignore=["lm_head", "re:.*125.*", "re:.*134.*", "re:.*143.*", "re:.*149.*"], dampening_frac=0.01, offload_hessians=False),
]
# Apply quantization
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
trust_remote_code_model=True
)
# Save the compressed model
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
Note that Layers 125, 134, 143 and 149 had to be excluded from GPTQ quantization, because their extreme size would lead to allocations of 600+GB Heassian matrices for GPTQ (which couldn't be offloaded for some reason). Furthermore, the GPU memory allocation code in calculate_offload_device_map() was adjusted.
Evaluation
GSM8K (3 Runs)
Original
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
gsm8k | 3 | flexible-extract | 5 | exact_match | ↑ | 0.9469 | ± | 0.0062 |
strict-match | 5 | exact_match | ↑ | 0.9462 | ± | 0.0062 | ||
----- | ------: | ---------------- | -----: | ----------- | --- | -----: | --- | -----: |
gsm8k | 3 | flexible-extract | 5 | exact_match | ↑ | 0.9424 | ± | 0.0064 |
strict-match | 5 | exact_match | ↑ | 0.9401 | ± | 0.0065 | ||
----- | ------: | ---------------- | -----: | ----------- | --- | -----: | --- | -----: |
gsm8k | 3 | flexible-extract | 5 | exact_match | ↑ | 0.9454 | ± | 0.0063 |
strict-match | 5 | exact_match | ↑ | 0.9454 | ± | 0.0063 | ||
----- | ------: | ---------------- | -----: | ----------- | --- | -----: | --- | -----: |
Avg: | 3 | flexible-extract | 5 | exact_match | ↑ | 0.9449 | ± | 0.0036 |
strict-match | 5 | exact_match | ↑ | 0.9439 | ± | 0.0037 |
Quantized
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
gsm8k | 3 | flexible-extract | 5 | exact_match | ↑ | 0.9431 | ± | 0.0064 |
strict-match | 5 | exact_match | ↑ | 0.9393 | ± | 0.0066 | ||
----- | ------: | ---------------- | -----: | ----------- | --- | -----: | --- | -----: |
gsm8k | 3 | flexible-extract | 5 | exact_match | ↑ | 0.9538 | ± | 0.0058 |
strict-match | 5 | exact_match | ↑ | 0.9500 | ± | 0.0060 | ||
----- | ------: | ---------------- | -----: | ----------- | --- | -----: | --- | -----: |
gsm8k | 3 | flexible-extract | 5 | exact_match | ↑ | 0.9477 | ± | 0.0061 |
strict-match | 5 | exact_match | ↑ | 0.9462 | ± | 0.0062 | ||
----- | ------: | ---------------- | -----: | ----------- | --- | -----: | --- | -----: |
Avg. | 3 | flexible-extract | 5 | exact_match | ↑ | 0.9482 | ± | 0.0035 |
strict-match | 5 | exact_match | ↑ | 0.9452 | ± | 0.0036 |
simple-evals (10x50 Samples each)
Using custom fork of OpenAI's simple-evals benchmark suite: https://github.com/Ithanil/simple-evals/tree/custom
These were run using the chat template as well as Nvidias suggested settings:
- Reasoning Off: Greedy (
temperature=0
), system prompt:detailed thinking off
- Reasoning On:
temperature=0.6
,top_p=0.95
, system prompt:detailed thinking on
Original (Reasoning Off)
Benchmark | Average Score | Standard Error |
---|---|---|
DROP (F1) | 92.6556 | 0.711437 |
GPQA | 43.2 | 2.04831 |
HumanEval | 85.6 | 0.37238 |
MGSM | 90.9091 | 1.40836 |
MMLU | 84.6 | 0.6 |
Quantized (Reasoning Off)
Benchmark | Average Score | Standard Error |
---|---|---|
DROP (F1) | 91.2381 | 0.843284 |
GPQA | 43.2 | 0.997775 |
HumanEval | 85.08 | 0.430194 |
MGSM | 92.9091 | 0.994013 |
MMLU | 82.8 | 1.04137 |
i.e. all quantized evals are within statistical error of original model's evals.
Quantized (Reasoning On)
For completeness, here also results for Reasoning ON:
Benchmark | Average Score | Standard Error |
---|---|---|
DROP (F1) | 89.8326 | 1.14615 |
GPQA | 61.2 | 1.81842 |
HumanEval | 93 | 0.181353 |
MGSM | 94.9091 | 0.931048 |
MMLU | 85.2 | 0.8 |
- Downloads last month
- 110
Model tree for Ithanil/Llama-3_1-Nemotron-Ultra-253B-v1-W8A8-Dynamic
Base model
nvidia/Llama-3_1-Nemotron-Ultra-253B-v1