Transformer-Based fMRI Encoder Model
This repository contains a Transformer-based model trained on neuroimaging datasets to classify conditions like Autism Spectrum Disorder (ASD) and ADHD, and to analyze brain activity during movie-watching. The model combines fMRI data with demographic features (age and gender) for binary classification tasks. Below is a detailed explanation of the datasets, model architecture, and training process.
Model Architecture
The model integrates multi-modal data and leverages a Transformer backbone for feature extraction. Below is a breakdown of its components:
1. Inputs
- fMRI ROI Data: High-dimensional features representing brain activity.
- Age Data: Numerical input passed through a Multi-Layer Perceptron (MLP).
- Gender Data: Binary input (male/female) embedded into a dense representation.
2. Transformer Backbone
- A pretrained Hugging Face Transformer (e.g., BERT) with:
- Configurable number of attention heads, layers, and hidden size.
- Dropout for regularization.
- Dynamically adjusted hyperparameters using
AutoConfig
.
3. Pooling Mechanisms
- Aggregates the Transformer’s sequence outputs into a single vector using:
- Mean Pooling: Averages hidden states.
- Max Pooling: Selects the maximum value for each feature.
- Attention Pooling: Learns attention weights to emphasize important sequence elements.
4. Output
- A fully connected layer maps the pooled output to a scalar value for binary classification.
Training Process
Key Details:
- Loss Function: Binary Cross Entropy with Logits (
BCEWithLogitsLoss
), with class imbalance handled using positive weights. - Optimizer: Ranger (combines RAdam and Lookahead for stable convergence).
- Learning Rate Scheduler: Cosine Annealing for gradual learning rate reduction.
- Gradient Clipping: Prevents exploding gradients with a clipping threshold of 1.0.
- Early Stopping: Stops training after 250 epochs without validation loss improvement.
Datasets Used:
- ABIDE: Autism vs. control classification.
- ADHD-200: ADHD vs. control classification.
- Pixar Movie Dataset (Nilearn): Brain activity analysis during movie-watching.
Output:
The model’s state dictionary is saved as fmri_encoder_model.pth
.
How to Use This Model
1. Import Required Libraries
At the beginning, you import all necessary libraries for the model's implementation and training.
from transformers import AutoModel, AutoConfig
import torch
import torch.nn as nn
from torch.optim.lr_scheduler import CosineAnnealingLR
2. Define the Transformer Model
The TransformerModel
is implemented as a PyTorch nn.Module
. It integrates a Hugging Face transformer (e.g., bert-base-uncased
) and custom embedding layers for ROI, age, and gender features.
Embedding Layers:
age_mlp
processes age as a continuous input.gender_embed
embeds the binary gender feature.
ROI Encoder: Encodes the ROI feature input using a small feedforward network.
Transformer: Initializes a Hugging Face transformer with a custom configuration.
Pooling Mechanism: Supports three pooling strategies:
- Mean pooling
- Max pooling
- Attention pooling (using an additional attention mechanism).
class TransformerModel(nn.Module):
def __init__(self, roi_input_dim, embed_dim, num_heads, num_layers, dropout_rate, pretrained_model_name="bert-base-uncased", pooling="mean"):
super(TransformerModel, self).__init__()
# Ensure embed_dim is divisible by num_heads
if embed_dim % num_heads != 0:
embed_dim = (embed_dim // num_heads) * num_heads
print(f"Adjusted embed_dim to {embed_dim} to ensure divisibility by num_heads.")
# Embedding layers for age and gender
self.age_mlp = nn.Sequential(
nn.Linear(1, embed_dim),
nn.GELU(),
nn.BatchNorm1d(embed_dim),
nn.Dropout(dropout_rate),
nn.Linear(embed_dim, embed_dim),
)
self.gender_embed = nn.Embedding(2, embed_dim)
# ROI encoder
self.roi_encoder = nn.Sequential(
nn.Linear(roi_input_dim, embed_dim),
nn.GELU(),
nn.BatchNorm1d(embed_dim),
nn.Linear(embed_dim, embed_dim),
nn.Dropout(dropout_rate),
)
# Hugging Face Transformer Model
config = AutoConfig.from_pretrained(pretrained_model_name)
config.hidden_size = embed_dim
config.num_attention_heads = num_heads
config.num_hidden_layers = num_layers
config.hidden_dropout_prob = dropout_rate
config.attention_probs_dropout_prob = dropout_rate
self.transformer = AutoModel.from_config(config)
# Pooling mechanism
assert pooling in ["mean", "max", "attention"]
self.pooling = pooling
if pooling == "attention":
self.attention_pool = nn.Sequential(
nn.Linear(embed_dim, embed_dim // 2),
nn.Mish(),
nn.Linear(embed_dim // 2, 1),
nn.Softmax(dim=1),
)
# Output layer
self.output_layer = nn.Linear(embed_dim, 1)
def forward(self, roi_data, age, gender):
age_embed = self.age_mlp(age.unsqueeze(-1))
gender_embed = self.gender_embed(gender.long())
roi_encoded = self.roi_encoder(roi_data)
combined_input = torch.stack((roi_encoded, age_embed, gender_embed), dim=1)
transformer_output = self.transformer(inputs_embeds=combined_input).last_hidden_state
if self.pooling == "mean":
pooled_output = transformer_output.mean(dim=1)
elif self.pooling == "max":
pooled_output = transformer_output.max(dim=1).values
elif self.pooling == "attention":
attention_weights = self.attention_pool(transformer_output)
pooled_output = (attention_weights * transformer_output).sum(dim=1)
return self.output_layer(pooled_output).squeeze(1)
3. Initialize the Model
The model is initialized using the best hyperparameters obtained (e.g., from an Optuna study or prior experimentation).
- Parameters:
roi_input_dim
: Number of input features for the ROI data.embed_dim
,num_heads
,num_layers
: Transformer model hyperparameters.dropout_rate
: Dropout rate to prevent overfitting.pretrained_model_name
: Name of the Hugging Face pretrained model.pooling
: Pooling strategy to summarize the transformer outputs.
model = TransformerModel(
roi_input_dim=roi_features.shape[1],
embed_dim=best_params["embed_dim"],
num_heads=best_params["num_heads"],
num_layers=best_params["num_layers"], # Optuna-tuned
dropout_rate=best_params["dropout_rate"],
pretrained_model_name="bert-base-uncased", # Pretrained transformer model
pooling="attention", # Optuna-tuned pooling strategy
).to(device)
4. Support for Multi-GPU Training
If multiple GPUs are available, the model is wrapped in nn.DataParallel
for parallel training.
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
5. Define Loss Function and Optimizer
Loss Function: The
BCEWithLogitsLoss
is used for binary classification tasks, and class imbalance is handled by a computedpos_weight
.Optimizer: Uses the
Ranger
optimizer with a learning rate from the best hyperparameters.Scheduler: A cosine annealing learning rate scheduler adjusts the learning rate over training.
# Compute class weights for imbalance
pos_weight = torch.tensor([len(new_y) / new_y.sum() - 1], dtype=torch.float32).to(device)
criterion = nn.BCEWithLogitsLoss(pos_weight=pos_weight)
# Optimizer and Scheduler
optimizer = optimizers.Ranger(model.parameters(), lr=best_params["lr"], weight_decay=1e-4)
scheduler = CosineAnnealingLR(optimizer, T_max=10, eta_min=0)
6. Load Pretrained Model Weights
The model can load previously trained weights to resume training or perform inference.
model.load_state_dict(torch.load("/kaggle/input/bert-encoder-fmri/pytorch/default/1/fmri_encoder_model.pth"))
7. Best Hyperparameters
These are the best hyperparameters used for model initialization and training.
best_params = {
"embed_dim": 768,
"num_heads": 32,
"num_layers": 12,
"dropout_rate": 0.119,
"lr": 3.66e-5,
}
Model tree for JayLacoma/fmri_encoder_3.0model
Base model
google-bert/bert-base-uncased