dustalov's picture
Update README.md
b8c3555 verified
|
raw
history blame
6.78 kB
metadata
license: apache-2.0
datasets:
  - bigcode/the-stack
  - bigcode/the-stack-v2
  - bigcode/starcoderdata
  - bigcode/commitpack
library_name: transformers
tags:
  - code
base_model:
  - JetBrains/Mellum-4b-base
model-index:
  - name: Mellum-4b-sft-python
    results:
      - task:
          type: text-generation
        dataset:
          type: tianyang/repobench_python_v1.1
          name: RepoBench 1.1 (Python)
        metrics:
          - name: EM
            type: exact_match
            value: 0.2837
            verified: false
          - name: EM  8k
            type: exact_match
            value: 0.2987
            verified: false
      - task:
          type: text-generation
        dataset:
          type: tianyang/repobench_python_v1.1
          name: RepoBench 1.1 (Python, 2k)
        metrics:
          - name: EM
            type: exact_match
            value: 0.2924
            verified: false
      - task:
          type: text-generation
        dataset:
          type: tianyang/repobench_python_v1.1
          name: RepoBench 1.1 (Python, 4k)
        metrics:
          - name: EM
            type: exact_match
            value: 0.306
            verified: false
      - task:
          type: text-generation
        dataset:
          type: tianyang/repobench_python_v1.1
          name: RepoBench 1.1 (Python, 8k)
        metrics:
          - name: EM
            type: exact_match
            value: 0.2977
            verified: false
      - task:
          type: text-generation
        dataset:
          type: tianyang/repobench_python_v1.1
          name: RepoBench 1.1 (Python, 12k)
        metrics:
          - name: EM
            type: exact_match
            value: 0.268
            verified: false
      - task:
          type: text-generation
        dataset:
          type: tianyang/repobench_python_v1.1
          name: RepoBench 1.1 (Python, 16k)
        metrics:
          - name: EM
            type: exact_match
            value: 0.2543
            verified: false
      - task:
          type: text-generation
        dataset:
          type: gonglinyuan/safim
          name: SAFIM
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.4212
            verified: false
      - task:
          type: text-generation
        dataset:
          type: gonglinyuan/safim
          name: SAFIM (Algorithmic)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.3316
            verified: false
      - task:
          type: text-generation
        dataset:
          type: gonglinyuan/safim
          name: SAFIM (Control)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.3611
            verified: false
      - task:
          type: text-generation
        dataset:
          type: gonglinyuan/safim
          name: SAFIM (API)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.571
            verified: false
      - task:
          type: text-generation
        dataset:
          type: loubnabnl/humaneval_infilling
          name: HumanEval Infilling (Single-Line)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.8045
            verified: false
      - task:
          type: text-generation
        dataset:
          type: loubnabnl/humaneval_infilling
          name: HumanEval Infilling (Multi-Line)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.4819
            verified: false
      - task:
          type: text-generation
        dataset:
          type: loubnabnl/humaneval_infilling
          name: HumanEval Infilling (Random Span)
        metrics:
          - name: pass@1
            type: pass@1
            value: 0.3768
            verified: false

Model Description

Mellum-4b-sft-python is a fine-tuned version of JetBrains' first open-source large language model (LLM) optimized for code-related tasks.

Pre-trained on over 4 trillion tokens with a context window of 8192 tokens across multiple programming languages, and then fine-tuned, Mellum-4b-sft-python is tailored specifically for code completion in Python. The model follows a LLaMA-style architecture with 4 billion parameters, making it efficient for both cloud inference (e.g., via vLLM) and local deployment (e.g., using llama.cpp or Ollama).

Mellum was trained using Automatic Mixed Precision (AMP) with bf16 precision. The uploaded version on Hugging Face retains the bf16 format for public use.

Designed for integration into professional developer tooling (e.g., intelligent code suggestions in IDEs), AI-powered coding assistants, and research on code understanding and generation, Mellum is also well-suited for educational applications and fine-tuning experiments.

Limitations

  • Biases: May reflect biases present in public codebases. For example it will likely produce code which is similar in style to the open-source repositories.
  • Security: Code suggestions should not be assumed to be secure or free of vulnerabilities.

Sample Usage

Here are examples of how to run and sample from the model.

Generic generaion

import json
from transformers import AutoTokenizer, AutoModelForCausalLM

example = """
import sys
import os
import time

sys.path.append(os.getcwd())

from cluster.prepare_data import get_headers_pairs_list, write_dist_matrix
from cluster.token_edit_distance import get_distance_matrix

if len(sys.argv) < 3:
    print(
        "Too few arguments. You should provide: \n1. dataset_filename" +
        "\n2. output_data_filename"
    )
    sys.exit()

start = time.perf_counter()
dataset_filename_ = sys.argv[1]
output_data_filename_ = sys.argv[2]

headers_pairs = get_headers_pairs_list(dataset_filename_, verbose=True)

dist_matrix, max_dist = get_distance_matrix(
    list(map(lambda x: x[1], headers_pairs)),
    verbose=True
)

write_dist_matrix(dist_matrix, max_dist, output_data_filename_, verbose=True)

end = time.perf_counter()
"""

tokenizer = AutoTokenizer.from_pretrained('JetBrains/Mellum-4b-base')
model = AutoModelForCausalLM.from_pretrained('JetBrains/Mellum-4b-base')
encoded_input = tokenizer(example, return_tensors='pt', return_token_type_ids=False)
input_len = len(encoded_input["input_ids"][0])
out = model.generate(
    **encoded_input,
    max_new_tokens=100,
)
print("### Context")
print(tokenizer.decode(out[0][:input_len]))
print("### Prediction")
print(tokenizer.decode(out[0][input_len:]))

Fill in the middle generation

prefix = """
def fibonacci(n: int) -> int:
"""

suffix = """
if __name__ == "__main__":
    print(fibonacci(10))
"""

encoded_input = tokenizer(f"<fim_suffix>{suffix}<fim_prefix>{prefix}<fim_middle>", return_tensors='pt', return_token_type_ids=False)
out = model.generate(
    **encoded_input,
    max_new_tokens=100,
)

Citation

If you use this model, please cite:

@misc{mellum-base-4b,
  title={Mellum base 4B},
  author={Nikita Pavlichenko, Iurii Nazarov, Ivan Dolgov, Julia Reshetnikova, Ekaterina Garanina, Karol Lasocki, Sergei Boitsov, Dariia Karaeva, Ivan Bondyrev, Maksim Sheptyakov, Dmitry Ustalov, Nikita Abramov, Olga Kolomyttseva, Kseniia Lysaniuk, Ilia Zavidnyi, Anton Semenkin, Uladzislau Sazanovich},
  year={2025},
}

Contact

For questions, collaborations and requests reach us out via [email protected]