metadata
license: apache-2.0
language:
- zh
- en
tags:
- intent-classification
- chinese
- albert
- binary-classification
- transformers
- diner-call
base_model:
- ckiplab/albert-base-chinese
datasets:
- Luigi/dinercall-intent
pipeline_tag: text-classification
model-index:
- name: albert-base-chinese-dinercall-intent
results:
- task:
name: Intent Classification
type: text-classification
dataset:
name: DinerCall Intent
type: Luigi/dinercall-intent
metrics:
- name: Accuracy
type: accuracy
value: 0.85
albert-base-chinese-dinercall-intent
A binary intent classification model fine-tuned from ckiplab/albert-base-chinese
on the Luigi/dinercall-intent
dataset. This model identifies whether a Chinese restaurant phone call contains a reservation intent (label=1
) or not (label=0
).
Model Details
- Base model:
ckiplab/albert-base-chinese
- Task: Binary intent classification
- Language: Traditional Chinese
- Labels:
0
: No intent to book a table1
: Intent to make a reservation
Use Cases
This model is designed for voice AI assistants in restaurants to automatically identify reservation intents from spoken or transcribed customer sentences.
Example Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("Luigi/albert-base-chinese-dinercall-intent")
model = AutoModelForSequenceClassification.from_pretrained("Luigi/albert-base-chinese-dinercall-intent")
inputs = tokenizer("你好,我想訂位,今天晚上七點兩位", return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted = torch.argmax(logits, dim=-1).item()
print(f"Prediction: {'Reservation intent' if predicted == 1 else 'No intent'}")