distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6191
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2418 1.0 57 2.1887 0.41
1.7963 2.0 114 1.7322 0.47
1.375 3.0 171 1.3294 0.67
1.0205 4.0 228 1.0478 0.7
0.8203 5.0 285 0.8415 0.76
0.699 6.0 342 0.7388 0.8
0.5515 7.0 399 0.7179 0.8
0.359 8.0 456 0.7102 0.83
0.3362 9.0 513 0.5565 0.87
0.2396 10.0 570 0.5104 0.86
0.1479 11.0 627 0.4885 0.87
0.1418 12.0 684 0.5929 0.85
0.1281 13.0 741 0.6748 0.83
0.049 14.0 798 0.6507 0.85
0.0401 15.0 855 0.6423 0.84
0.0251 16.0 912 0.5937 0.86
0.0147 17.0 969 0.5809 0.88
0.0541 18.0 1026 0.5991 0.88
0.0123 19.0 1083 0.6127 0.88
0.0079 20.0 1140 0.6191 0.88

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for MartinRedWhite/distilhubert-finetuned-gtzan

Finetuned
(456)
this model

Dataset used to train MartinRedWhite/distilhubert-finetuned-gtzan

Evaluation results