distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6191
- Accuracy: 0.88
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.2418 | 1.0 | 57 | 2.1887 | 0.41 |
1.7963 | 2.0 | 114 | 1.7322 | 0.47 |
1.375 | 3.0 | 171 | 1.3294 | 0.67 |
1.0205 | 4.0 | 228 | 1.0478 | 0.7 |
0.8203 | 5.0 | 285 | 0.8415 | 0.76 |
0.699 | 6.0 | 342 | 0.7388 | 0.8 |
0.5515 | 7.0 | 399 | 0.7179 | 0.8 |
0.359 | 8.0 | 456 | 0.7102 | 0.83 |
0.3362 | 9.0 | 513 | 0.5565 | 0.87 |
0.2396 | 10.0 | 570 | 0.5104 | 0.86 |
0.1479 | 11.0 | 627 | 0.4885 | 0.87 |
0.1418 | 12.0 | 684 | 0.5929 | 0.85 |
0.1281 | 13.0 | 741 | 0.6748 | 0.83 |
0.049 | 14.0 | 798 | 0.6507 | 0.85 |
0.0401 | 15.0 | 855 | 0.6423 | 0.84 |
0.0251 | 16.0 | 912 | 0.5937 | 0.86 |
0.0147 | 17.0 | 969 | 0.5809 | 0.88 |
0.0541 | 18.0 | 1026 | 0.5991 | 0.88 |
0.0123 | 19.0 | 1083 | 0.6127 | 0.88 |
0.0079 | 20.0 | 1140 | 0.6191 | 0.88 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 2.15.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for MartinRedWhite/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert