SetFit with cambridgeltl/SapBERT-from-PubMedBERT-fulltext

This is a SetFit model that can be used for Text Classification. This SetFit model uses cambridgeltl/SapBERT-from-PubMedBERT-fulltext as the Sentence Transformer embedding model. A MultiOutputClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label Accuracy
all 0.1757

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("caspases")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 1.7652 5

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 15
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0009 1 0.2361 -
0.0463 50 0.2377 -
0.0927 100 0.2269 -
0.1390 150 0.2104 -
0.1854 200 0.1871 -
0.2317 250 0.1437 -
0.2780 300 0.1322 -
0.3244 350 0.1365 -
0.3707 400 0.1155 -
0.4171 450 0.1144 -
0.4634 500 0.1068 -
0.5097 550 0.1011 -
0.5561 600 0.095 -
0.6024 650 0.0933 -
0.6487 700 0.1063 -
0.6951 750 0.0999 -
0.7414 800 0.0823 -
0.7878 850 0.0877 -
0.8341 900 0.0767 -
0.8804 950 0.0849 -
0.9268 1000 0.0796 -
0.9731 1050 0.0877 -
1.0195 1100 0.0759 -
1.0658 1150 0.0705 -
1.1121 1200 0.0728 -
1.1585 1250 0.0738 -
1.2048 1300 0.0767 -
1.2512 1350 0.0692 -
1.2975 1400 0.0697 -
1.3438 1450 0.0639 -
1.3902 1500 0.0729 -
1.4365 1550 0.0759 -
1.4829 1600 0.0786 -
1.5292 1650 0.0618 -
1.5755 1700 0.0722 -
1.6219 1750 0.0719 -
1.6682 1800 0.072 -
1.7146 1850 0.0654 -
1.7609 1900 0.0683 -
1.8072 1950 0.0654 -
1.8536 2000 0.0679 -
1.8999 2050 0.0643 -
1.9462 2100 0.0662 -
1.9926 2150 0.0642 -
2.0389 2200 0.0812 -
2.0853 2250 0.068 -
2.1316 2300 0.0583 -
2.1779 2350 0.0627 -
2.2243 2400 0.0654 -
2.2706 2450 0.0571 -
2.3170 2500 0.0623 -
2.3633 2550 0.0639 -
2.4096 2600 0.059 -
2.4560 2650 0.0637 -
2.5023 2700 0.0675 -
2.5487 2750 0.0696 -
2.5950 2800 0.0669 -
2.6413 2850 0.0633 -
2.6877 2900 0.0606 -
2.7340 2950 0.0609 -
2.7804 3000 0.054 -
2.8267 3050 0.0598 -
2.8730 3100 0.0597 -
2.9194 3150 0.0618 -
2.9657 3200 0.065 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.39.0
  • PyTorch: 2.4.1+cu121
  • Datasets: 3.0.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
0
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for MiguelRod/SetFit-Chemical-Biomaterials-Classifier

Finetuned
(7)
this model

Evaluation results