SetFit with cambridgeltl/SapBERT-from-PubMedBERT-fulltext

This is a SetFit model that can be used for Text Classification. This SetFit model uses cambridgeltl/SapBERT-from-PubMedBERT-fulltext as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label Accuracy
all 0.5241

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("foreign-body reaction: Chronic inflammation and granuloma formation around irritating foreign bodies.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 30.4473 134

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0003 1 0.2929 -
0.0136 50 0.2377 -
0.0272 100 0.2321 -
0.0408 150 0.2199 -
0.0544 200 0.1726 -
0.0680 250 0.1355 -
0.0816 300 0.1207 -
0.0952 350 0.1138 -
0.1088 400 0.1154 -
0.1223 450 0.095 -
0.1359 500 0.106 -
0.1495 550 0.0913 -
0.1631 600 0.0943 -
0.1767 650 0.0974 -
0.1903 700 0.0923 -
0.2039 750 0.0893 -
0.2175 800 0.0804 -
0.2311 850 0.0849 -
0.2447 900 0.0766 -
0.2583 950 0.0838 -
0.2719 1000 0.0725 -
0.2855 1050 0.073 -
0.2991 1100 0.055 -
0.3127 1150 0.0758 -
0.3263 1200 0.0709 -
0.3399 1250 0.0569 -
0.3535 1300 0.0535 -
0.3670 1350 0.0557 -
0.3806 1400 0.0596 -
0.3942 1450 0.0453 -
0.4078 1500 0.0428 -
0.4214 1550 0.0482 -
0.4350 1600 0.0465 -
0.4486 1650 0.0469 -
0.4622 1700 0.0479 -
0.4758 1750 0.0451 -
0.4894 1800 0.0613 -
0.5030 1850 0.0533 -
0.5166 1900 0.0476 -
0.5302 1950 0.0449 -
0.5438 2000 0.0543 -
0.5574 2050 0.0509 -
0.5710 2100 0.043 -
0.5846 2150 0.0482 -
0.5982 2200 0.0513 -
0.6117 2250 0.0366 -
0.6253 2300 0.0385 -
0.6389 2350 0.0446 -
0.6525 2400 0.0411 -
0.6661 2450 0.037 -
0.6797 2500 0.0321 -
0.6933 2550 0.0468 -
0.7069 2600 0.0331 -
0.7205 2650 0.0315 -
0.7341 2700 0.0435 -
0.7477 2750 0.0394 -
0.7613 2800 0.0381 -
0.7749 2850 0.0418 -
0.7885 2900 0.0347 -
0.8021 2950 0.0468 -
0.8157 3000 0.0352 -
0.8293 3050 0.0416 -
0.8428 3100 0.0354 -
0.8564 3150 0.0329 -
0.8700 3200 0.0359 -
0.8836 3250 0.036 -
0.8972 3300 0.0362 -
0.9108 3350 0.0296 -
0.9244 3400 0.041 -
0.9380 3450 0.0375 -
0.9516 3500 0.0282 -
0.9652 3550 0.0341 -
0.9788 3600 0.0283 -
0.9924 3650 0.0339 -

Framework Versions

  • Python: 3.11.11
  • SetFit: 1.1.1
  • Sentence Transformers: 3.4.1
  • Transformers: 4.50.0
  • PyTorch: 2.6.0+cu124
  • Datasets: 3.4.1
  • Tokenizers: 0.21.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
0
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for MiguelRod/SetFit-MeSH-Biomaterials-Classifier

Finetuned
(7)
this model

Evaluation results