[WIP] Guide document for function calling

#32
by QscQ - opened
MiniMax-Text-01_Function_Call_Guide.md ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MiniMax-Text-01 Function Call Guide
2
+
3
+ ## 📖 Introduction
4
+
5
+ MiniMax-Text-01 model supports function calling capability, allowing the model to identify when an external function needs to be called and output function call parameters in a structured format. This document provides detailed instructions on how to use the function calling feature of MiniMax-Text-01.
6
+
7
+ ## 🛠️ Defining Function Calls
8
+
9
+ ### Function Structure
10
+
11
+ Function calls need to be defined in the `tools` field of the request body. Each function consists of:
12
+
13
+ ```json
14
+ {
15
+ "tools": [
16
+ {
17
+ "type": "function",
18
+ "function": {
19
+ "name": "function_name", // Function name, required
20
+ "description": "function_description", // Brief description of the function's purpose
21
+ "parameters": { // Parameter definition in JSON Schema format
22
+ "type": "object", // Overall type, fixed as "object"
23
+ "properties": { // Parameter property object
24
+ "param_name": { // Parameter name
25
+ "description": "Parameter description", // Description
26
+ "type": "string|number|boolean|array|object" // Type
27
+ }
28
+ },
29
+ "required": ["param1", "param2"] // List of required parameters
30
+ }
31
+ }
32
+ }
33
+ ]
34
+ }
35
+ ```
36
+
37
+ ### Example
38
+
39
+ Below is a simple example of a weather query function definition:
40
+
41
+ ```json
42
+ "tools": [
43
+ {
44
+ "type": "function",
45
+ "function": {
46
+ "name": "get_current_weather",
47
+ "description": "Get the latest weather for a location",
48
+ "parameters": {
49
+ "type": "object",
50
+ "properties": {
51
+ "location": {
52
+ "type": "string",
53
+ "description": "A certain city, such as Beijing, Shanghai"
54
+ }
55
+ },
56
+ "required": ["location"]
57
+ }
58
+ }
59
+ }
60
+ ]
61
+ ```
62
+
63
+ ### Complete Request Example
64
+
65
+ Below is a complete Python code example that includes function definitions:
66
+
67
+ ```python
68
+ payload = json.dumps({
69
+ "model": "MiniMax-Text-01",
70
+ "messages": [
71
+ {
72
+ "role": "system",
73
+ "content": "MM Intelligent Assistant is a large-scale language model developed by MiniMax and has no interfaces to call other products. MiniMax is a China technology company that has been committed to conducting research related to large models."
74
+ },
75
+ {
76
+ "role": "user",
77
+ "content": "What's the weather like in Shanghai today?"
78
+ }
79
+ ],
80
+ "tools": [
81
+ {
82
+ "type": "function",
83
+ "function": {
84
+ "name": "get_current_weather",
85
+ "description": "Get the latest weather for a location",
86
+ "parameters": {
87
+ "type": "object",
88
+ "properties": {
89
+ "location": {
90
+ "type": "string",
91
+ "description": "A certain city, such as Beijing, Shanghai"
92
+ }
93
+ },
94
+ "required": ["location"]
95
+ }
96
+ }
97
+ }
98
+ ],
99
+ "tool_choice": "auto",
100
+ "stream": True,
101
+ "max_tokens": 10000,
102
+ "temperature": 0.9,
103
+ "top_p": 1
104
+ })
105
+ ```
106
+
107
+ ## 🔄 Function Call Input Format
108
+
109
+ When processed internally by the model, function definitions are converted to a special format and concatenated to the input text:
110
+
111
+ ```
112
+ <beginning_of_sentence>system function_setting=functions
113
+ {"name": "get_current_weather", "description": "Get the latest weather for a location", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "A certain city, such as Beijing, Shanghai"}}, "required": ["location"]}}<end_of_sentence>
114
+ ```
115
+
116
+ Important notes:
117
+ 1. Function definitions are placed after the system settings and before the conversation data
118
+ 2. Function definitions are marked with `function_setting=functions`
119
+ 3. Each function is defined as a JSON string
120
+ 4. The area ends with `<end_of_sentence>`
121
+
122
+ ## 📤 Model Function Call Output
123
+
124
+ When the model decides to call a function, it outputs the function call information in a special format:
125
+
126
+ ````
127
+ <function_call>```typescript
128
+ functions.get_current_weather({"location": "Shanghai"})
129
+ ```
130
+ ````
131
+
132
+ "<function_call>" is a special token, followed by "functions.function_name(parameter json structure)". The parameters need to be string-matched and executed externally.
133
+
134
+ ## 📥 Handling Function Results
135
+
136
+ After a function is successfully executed, the model will return output in the following format:
137
+
138
+ ````typescript
139
+ ```typescript
140
+ functions.get_current_weather({"location": "Shanghai"})
141
+ ```
142
+ ````
143
+
144
+ You can use the following regular expression method to extract the function name and parameters for subsequent processing:
145
+
146
+ ````python
147
+ def parse_function_calls(content: str):
148
+ """
149
+ Parse the function call content returned by the model, extract function name and parameters
150
+
151
+ Parameters:
152
+ content: The original content string returned by the model
153
+
154
+ Returns:
155
+ A dictionary of parsed function call information, including function name and parameters
156
+ """
157
+ # Match typescript code block
158
+ pattern = r"```typescript\n(.+?)?\n```"
159
+ matches = re.finditer(pattern, content, re.DOTALL)
160
+
161
+ for match in matches:
162
+ function_code = match.group(1)
163
+ # Extract function name and parameters
164
+ function_match = re.search(r'functions\.(\w+)\((.+)\)', function_code)
165
+
166
+ if not function_match:
167
+ continue
168
+
169
+ function_name = function_match.group(1)
170
+ arguments_str = function_match.group(2)
171
+
172
+ try:
173
+ # Parse parameter JSON
174
+ arguments = json.loads(arguments_str)
175
+ print(f"Function call: {function_name}, Parameters: {arguments}")
176
+
177
+ # Example: Handle weather query function
178
+ if function_name == "get_current_weather":
179
+ location = arguments.get("location", "Unknown location")
180
+ # Build function execution result
181
+ return {
182
+ "role": "function",
183
+ "name": function_name,
184
+ "text": json.dumps({
185
+ "location": location,
186
+ "temperature": "25",
187
+ "unit": "celsius",
188
+ "weather": "Sunny"
189
+ }, ensure_ascii=False)
190
+ }
191
+ except json.JSONDecodeError as e:
192
+ print(f"Parameter parsing failed: {arguments_str}, Error: {e}")
193
+
194
+ return {}
195
+ ````
196
+
197
+ After successfully parsing the function call, you should add the function execution result to the conversation history so that the model can access and utilize this information in subsequent interactions.
198
+
199
+ ## 💻 Function Call Example with Transformers Library
200
+
201
+ The official MiniMax-Text-01 repository provides a complete example of function calling using the Transformers library. You can view the source code in the [MiniMaxAI/MiniMax-Text-01 huggingface repository](https://huggingface.co/MiniMaxAI/MiniMax-Text-01/blob/main/main.py).
202
+
203
+ The following is the key part of implementing function calls using the Transformers library:
204
+
205
+ ```python
206
+ def get_default_tools():
207
+ return [
208
+ {
209
+ "type": "function",
210
+ "function": {
211
+ "name": "get_current_weather",
212
+ "description": "Get the latest weather for a location",
213
+ "parameters": {
214
+ "type": "object",
215
+ "properties": {
216
+ "location": {
217
+ "type": "string",
218
+ "description": "A certain city, such as Beijing, Shanghai"
219
+ }
220
+ },
221
+ "required": ["location"]
222
+ }
223
+ }
224
+ }
225
+ ]
226
+
227
+ # Load model and tokenizer
228
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
229
+ prompt = "What's the weather like in Shanghai today?"
230
+ messages = [
231
+ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-Text-01 model."}]},
232
+ {"role": "user", "content": [{"type": "text", "text": prompt}]},
233
+ ]
234
+
235
+ # Enable function call tools
236
+ tools = get_default_tools()
237
+
238
+ # Apply chat template and add tool definitions
239
+ text = tokenizer.apply_chat_template(
240
+ messages,
241
+ tokenize=False,
242
+ add_generation_prompt=True,
243
+ tools=tools
244
+ )
245
+
246
+ # Generate response
247
+ model_inputs = tokenizer(text, return_tensors="pt").to("cuda")
248
+ quantized_model = AutoModelForCausalLM.from_pretrained(
249
+ model_id,
250
+ torch_dtype="bfloat16",
251
+ device_map=device_map,
252
+ quantization_config=quantization_config,
253
+ trust_remote_code=True,
254
+ offload_buffers=True,
255
+ )
256
+ generation_config = GenerationConfig(
257
+ max_new_tokens=20,
258
+ eos_token_id=200020,
259
+ use_cache=True,
260
+ )
261
+
262
+ # Execute generation
263
+ generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config)
264
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
265
+ ```
266
+
267
+ ### Running the Example
268
+
269
+ You can run the example code using the following command:
270
+
271
+ ```bash
272
+ export SAFETENSORS_FAST_GPU=1
273
+ python main.py --quant_type int8 --world_size 8 --model_id <model_path> --enable_tools
274
+ ```
275
+
276
+ Parameter description:
277
+ - `--quant_type`: Quantization type, options are "default" or "int8"
278
+ - `--world_size`: Number of GPUs, int8 quantization requires at least 8 GPUs
279
+ - `--model_id`: Model path
280
+ - `--enable_tools`: Enable function call feature
281
+
282
+ ### Result Processing
283
+ As expected, you will get the following output:
284
+
285
+ ````base
286
+ ```typescript
287
+ functions.get_current_weather({"location": "Shanghai"})
288
+ ```
289
+ ````
290
+
291
+ You can use regular expressions to extract the function to call and its corresponding parameters:
292
+
293
+ ````python
294
+ def try_parse_tool_calls(content: str):
295
+ pattern = r"```typescript\n(.+?)?\n```"
296
+ matches = re.finditer(pattern, content, re.DOTALL)
297
+
298
+ for match in matches:
299
+ function_code = match.group(1)
300
+ function_match = re.search(r'functions\.(\w+)\((.+)\)', function_code)
301
+
302
+ if not function_match:
303
+ continue
304
+
305
+ function_name = function_match.group(1)
306
+ arguments_str = function_match.group(2)
307
+
308
+ try:
309
+ arguments = json.loads(arguments_str)
310
+ print(f"tool_calls: [{{'type': 'function', 'function': {{'name': '{function_name}', 'arguments': {arguments}}}}}]")
311
+
312
+ if function_name == "get_current_weather":
313
+ location = arguments.get("location", "Unknown")
314
+ return {"role": "function", "name": function_name, "text": f'{{"location": "{location}", "temperature": "25", "unit": "celsius", "weather": "Sun"}}'}
315
+ except json.JSONDecodeError as e:
316
+ print(f"Failed parse tools: {arguments_str}, Error: {e}")
317
+
318
+ return {}
319
+ ````
320
+
321
+ ### Chat Template
322
+
323
+ MiniMax-Text-01 uses a specific chat template format to process function calls. The chat template is defined in `tokenizer_config.json`:
324
+
325
+ ```json
326
+ "{% for message in messages %}{% if message['role'] == 'system' %}{{ '<beginning_of_sentence>system ai_setting=assistant\\n' + message['content'][0]['text'] + '<end_of_sentence>\\n'}}{% elif message['role'] == 'user' %}{{ '<beginning_of_sentence>user name=user\\n' + message['content'][0]['text'] + '<end_of_sentence>\\n'}}{% elif message['role'] == 'assistant' %}{{ '<beginning_of_sentence>ai name=assistant\\n' }}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] }}{% endgeneration %}{% endfor %}{{ '<end_of_sentence>\\n' }}{% elif message['role'] == 'function' %}{{ '<beginning_of_sentence>system function_response=functions\\n' + '{\"name\": \"' + message['name'] + '\", \"response\": ' + message['content'][0]['text'] + '}' + '<end_of_sentence>\\n'}}{% endif %}{% endfor %}{% if tools %}{% for function in tools %}{{ '<beginning_of_sentence>system function_setting=functions\\n' + function | tojson + '<end_of_sentence>\\n'}}{% endfor %}{% endif %}{% if add_generation_prompt %}{{ '<beginning_of_sentence>ai name=assistant\\n' }}{% endif %}"
327
+ ```
328
+
329
+ ## 📝 Important Notes
330
+
331
+ 1. Function names should follow programming language naming conventions and avoid special characters
332
+ 2. Parameter descriptions should be concise and help the model understand the parameter's purpose and constraints
333
+ 3. The model does not guarantee that it will call a function; this depends on the user's input and the model's judgment
334
+ 4. Function results should be returned in a structured format for easy processing by the model
335
+ 5. The model might not call a function even if one is provided, depending on whether it determines a function call is appropriate for the given user query
MiniMax-Text-01_Function_Call_Guide_CN.md ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MiniMax-Text-01 函数调用(Function Call)功能指南
2
+
3
+ ## 📖 简介
4
+
5
+ MiniMax-Text-01 模型支持函数调用功能,使模型能够识别何时需要调用外部函数,并以结构化格式输出函数调用参数。本文档详细介绍了如何使用 MiniMax-Text-01 的函数调用功能。
6
+
7
+ ## 🛠️ 函数调用的定义
8
+
9
+ ### 函数结构体
10
+
11
+ 函数调用需要在请求体中定义 `tools` 字段,每个函数由以下部分组成:
12
+
13
+ ```json
14
+ {
15
+ "tools": [
16
+ {
17
+ "type": "function",
18
+ "function": {
19
+ "name": "function_name", // 函数名称,必填
20
+ "description": "function_description", // 函数描述,应简明扼要说明函数功能
21
+ "parameters": { // 函数参数定义,符合 JSON Schema 格式
22
+ "type": "object", // 参数整体类型,固定为object
23
+ "properties": { // 参数属性对象
24
+ "param_name": { // 参数名称
25
+ "description": "参数描述", // 参数说明
26
+ "type": "string|number|boolean|array|object" // 参数类型
27
+ }
28
+ },
29
+ "required": ["param1", "param2"] // 必填参数列表
30
+ }
31
+ }
32
+ }
33
+ ]
34
+ }
35
+ ```
36
+
37
+ ### 示例
38
+
39
+ 以下是一个简单的天气查询函数定义示例:
40
+
41
+ ```json
42
+ "tools": [
43
+ {
44
+ "type": "function",
45
+ "function": {
46
+ "name": "get_current_weather",
47
+ "description": "Get the latest weather for a location",
48
+ "parameters": {
49
+ "type": "object",
50
+ "properties": {
51
+ "location": {
52
+ "type": "string",
53
+ "description": "A certain city, such as Beijing, Shanghai"
54
+ }
55
+ },
56
+ "required": ["location"]
57
+ }
58
+ }
59
+ }
60
+ ]
61
+ ```
62
+
63
+ ### 完整请求示例
64
+
65
+ 下面是一个包含函数定义的完整Python代码示例:
66
+
67
+ ```python
68
+ payload = json.dumps({
69
+ "model": "MiniMax-Text-01",
70
+ "messages": [
71
+ {
72
+ "role": "system",
73
+ "content": "MM Intelligent Assistant is a large-scale language model developed by MiniMax and has no interfaces to call other products. MiniMax is a China technology company that has been committed to conducting research related to large models."
74
+ },
75
+ {
76
+ "role": "user",
77
+ "content": "上海今天天气怎么样?"
78
+ }
79
+ ],
80
+ "tools": [
81
+ {
82
+ "type": "function",
83
+ "function": {
84
+ "name": "get_current_weather",
85
+ "description": "Get the latest weather for a location",
86
+ "parameters": {
87
+ "type": "object",
88
+ "properties": {
89
+ "location": {
90
+ "type": "string",
91
+ "description": "A certain city, such as Beijing, Shanghai"
92
+ }
93
+ },
94
+ "required": ["location"]
95
+ }
96
+ }
97
+ }
98
+ ],
99
+ "tool_choice": "auto",
100
+ "stream": True,
101
+ "max_tokens": 10000,
102
+ "temperature": 0.9,
103
+ "top_p": 1
104
+ })
105
+ ```
106
+
107
+ ## 🔄 函数调用的输入格式
108
+
109
+ 在模型内部处理时,函数定义会被转换为特殊格式并拼接到输入文本中:
110
+
111
+ ```
112
+ <beginning_of_sentence>system function_setting=functions
113
+ {"name": "get_current_weather", "description": "Get the latest weather for a location", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "A certain city, such as Beijing, Shanghai"}}, "required": ["location"]}}<end_of_sentence>
114
+ ```
115
+
116
+ 注意事项:
117
+ 1. 函数定义位于系统设置之后、对话数据之前
118
+ 2. 使用 `function_setting=functions` 标记函数定义区域
119
+ 3. 每个函数定义使用JSON字符串表示
120
+ 4. 区域以 `<end_of_sentence>` 结束
121
+
122
+ ## 📤 模型的函数调用输出
123
+
124
+ 当模型决定调用函数时,它会在响应中使用特殊格式输出函数调用信息:
125
+
126
+ ````
127
+ <function_call>```typescript
128
+ functions.get_current_weather({"location": "上海"})
129
+ ```
130
+ ````
131
+
132
+ "<function_call>" 是 special token, 后面的 "functions.函数名(参数 json 结构体)", 需要字符串匹配出参数, 交外部执行.
133
+
134
+ ## 📥 函数执行结果的处理
135
+
136
+ 当函数调用成功执行后,模型将返回以下格式的输出:
137
+
138
+ ````typescript
139
+ ```typescript
140
+ functions.get_current_weather({"location": "Shanghai"})
141
+ ```
142
+ ````
143
+
144
+ 您可以使用以下正则表达式方法提取函数名称和参数,便于后续处理:
145
+
146
+ ````python
147
+ def parse_function_calls(content: str):
148
+ """
149
+ 解析模型返回的函数调用内容,提取函数名和参数
150
+
151
+ 参数:
152
+ content: 模型返回的原始内容字符串
153
+
154
+ 返回:
155
+ 解析后的函数调用信息字典,包含函数名和参数
156
+ """
157
+ # 匹配 typescript 代码块
158
+ pattern = r"```typescript\n(.+?)?\n```"
159
+ matches = re.finditer(pattern, content, re.DOTALL)
160
+
161
+ for match in matches:
162
+ function_code = match.group(1)
163
+ # 提取函数名和参数
164
+ function_match = re.search(r'functions\.(\w+)\((.+)\)', function_code)
165
+
166
+ if not function_match:
167
+ continue
168
+
169
+ function_name = function_match.group(1)
170
+ arguments_str = function_match.group(2)
171
+
172
+ try:
173
+ # 解析参数JSON
174
+ arguments = json.loads(arguments_str)
175
+ print(f"调用函数: {function_name}, 参数: {arguments}")
176
+
177
+ # 示例: 处理天气查询函数
178
+ if function_name == "get_current_weather":
179
+ location = arguments.get("location", "未知位置")
180
+ # 构建函数执行结果
181
+ return {
182
+ "role": "function",
183
+ "name": function_name,
184
+ "text": json.dumps({
185
+ "location": location,
186
+ "temperature": "25",
187
+ "unit": "celsius",
188
+ "weather": "晴朗"
189
+ }, ensure_ascii=False)
190
+ }
191
+ except json.JSONDecodeError as e:
192
+ print(f"参数解析失败: {arguments_str}, 错误: {e}")
193
+
194
+ return {}
195
+ ````
196
+
197
+ 成功解析函数调用后,您应将函数执行结果添加到对话历史中,以便模型在后续交互中能够访问和利用这些信息。
198
+
199
+ ## 💻 使用 Transformers 库的函数调用示例
200
+
201
+ MiniMax-Text-01 官方仓库提供了使用 Transformers 库进行函数调用的完整示例。您可以在 [MiniMaxAI/MiniMax-Text-01 huggingface 仓库](https://huggingface.co/MiniMaxAI/MiniMax-Text-01/blob/main/main.py) 中查看源代码。
202
+
203
+ 以下是使用 Transformers 库实现函数调用的关键部分:
204
+
205
+ ```python
206
+ def get_default_tools():
207
+ return [
208
+ {
209
+ "type": "function",
210
+ "function": {
211
+ "name": "get_current_weather",
212
+ "description": "Get the latest weather for a location",
213
+ "parameters": {
214
+ "type": "object",
215
+ "properties": {
216
+ "location": {
217
+ "type": "string",
218
+ "description": "A certain city, such as Beijing, Shanghai"
219
+ }
220
+ },
221
+ "required": ["location"]
222
+ }
223
+ }
224
+ }
225
+ ]
226
+
227
+ # 加载模型和分词器
228
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
229
+ prompt = "What's the weather like in Shanghai today?"
230
+ messages = [
231
+ {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant created by Minimax based on MiniMax-Text-01 model."}]},
232
+ {"role": "user", "content": [{"type": "text", "text": prompt}]},
233
+ ]
234
+
235
+ # 启用函数调用工具
236
+ tools = get_default_tools()
237
+
238
+ # 应用聊天模板,并加入工具定义
239
+ text = tokenizer.apply_chat_template(
240
+ messages,
241
+ tokenize=False,
242
+ add_generation_prompt=True,
243
+ tools=tools
244
+ )
245
+
246
+ # 生成回复
247
+ model_inputs = tokenizer(text, return_tensors="pt").to("cuda")
248
+ quantized_model = AutoModelForCausalLM.from_pretrained(
249
+ model_id,
250
+ torch_dtype="bfloat16",
251
+ device_map=device_map,
252
+ quantization_config=quantization_config,
253
+ trust_remote_code=True,
254
+ offload_buffers=True,
255
+ )
256
+ generation_config = GenerationConfig(
257
+ max_new_tokens=20,
258
+ eos_token_id=200020,
259
+ use_cache=True,
260
+ )
261
+
262
+ # 执行生成
263
+ generated_ids = quantized_model.generate(**model_inputs, generation_config=generation_config)
264
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
265
+ ```
266
+
267
+ ### 运行方式
268
+
269
+ 您可以通过以下命令运行示例代码:
270
+
271
+ ```bash
272
+ export SAFETENSORS_FAST_GPU=1
273
+ python main.py --quant_type int8 --world_size 8 --model_id <model_path> --enable_tools
274
+ ```
275
+
276
+ 参数说明:
277
+ - `--quant_type`: 量化类型,可选 "default" 或 "int8"
278
+ - `--world_size`: GPU 数量,int8 量化至少需要 8 个 GPU
279
+ - `--model_id`: 模型路径
280
+ - `--enable_tools`: 启用函数调用功能
281
+
282
+ ### 结果处理
283
+ 符合预期的情况下,你将得到以下输出
284
+
285
+ ````base
286
+ ```typescript
287
+ functions.get_current_weather({"location": "Shanghai"})
288
+ ```
289
+ ````
290
+
291
+ 你可以使用正则表达式提取出需要调用的 function 和 对应的参数
292
+
293
+ ````python
294
+ def try_parse_tool_calls(content: str):
295
+ pattern = r"```typescript\n(.+?)?\n```"
296
+ matches = re.finditer(pattern, content, re.DOTALL)
297
+
298
+ for match in matches:
299
+ function_code = match.group(1)
300
+ function_match = re.search(r'functions\.(\w+)\((.+)\)', function_code)
301
+
302
+ if not function_match:
303
+ continue
304
+
305
+ function_name = function_match.group(1)
306
+ arguments_str = function_match.group(2)
307
+
308
+ try:
309
+ arguments = json.loads(arguments_str)
310
+ print(f"tool_calls: [{{'type': 'function', 'function': {{'name': '{function_name}', 'arguments': {arguments}}}}}]")
311
+
312
+ if function_name == "get_current_weather":
313
+ location = arguments.get("location", "Unknown")
314
+ return {"role": "function", "name": function_name, "text": f'{{"location": "{location}", "temperature": "25", "unit": "celsius", "weather": "Sun"}}'}
315
+ except json.JSONDecodeError as e:
316
+ print(f"Failed parse tools: {arguments_str}, Error: {e}")
317
+
318
+ return {}
319
+ ````
320
+
321
+ ### 聊天模板
322
+
323
+ MiniMax-Text-01 使用特定的聊天模板格式处理函数调用。聊天模板定义在 `tokenizer_config.json` 中:
324
+
325
+ ```json
326
+ "{% for message in messages %}{% if message['role'] == 'system' %}{{ '<beginning_of_sentence>system ai_setting=assistant\\n' + message['content'][0]['text'] + '<end_of_sentence>\\n'}}{% elif message['role'] == 'user' %}{{ '<beginning_of_sentence>user name=user\\n' + message['content'][0]['text'] + '<end_of_sentence>\\n'}}{% elif message['role'] == 'assistant' %}{{ '<beginning_of_sentence>ai name=assistant\\n' }}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] }}{% endgeneration %}{% endfor %}{{ '<end_of_sentence>\\n' }}{% elif message['role'] == 'function' %}{{ '<beginning_of_sentence>system function_response=functions\\n' + '{\"name\": \"' + message['name'] + '\", \"response\": ' + message['content'][0]['text'] + '}' + '<end_of_sentence>\\n'}}{% endif %}{% endfor %}{% if tools %}{% for function in tools %}{{ '<beginning_of_sentence>system function_setting=functions\\n' + function | tojson + '<end_of_sentence>\\n'}}{% endfor %}{% endif %}{% if add_generation_prompt %}{{ '<beginning_of_sentence>ai name=assistant\\n' }}{% endif %}"
327
+
328
+ ```
329
+
330
+ ## 📝 注意事项
331
+
332
+ 1. 函数名称应当遵循编程语言的命名规范,避免使用特殊字符
333
+ 2. 参数描述应当简洁明了,帮助模型理解参数的用途和约束
334
+ 3. 模型并不保证每次都会调用函数,这取决于用户的输入和模型的判断
335
+ 4. 函数调用结果应当以结构化方式返回,便于模型理解和处理
tokenizer_config.json CHANGED
@@ -6,5 +6,5 @@
6
  "model_max_length": 40960000,
7
  "tokenizer_class": "GPT2Tokenizer",
8
  "unk_token": "<end_of_document>",
9
- "chat_template": "{% for message in messages %}{% if message['role'] == 'system' %}{{ '<beginning_of_sentence>system ai_setting=assistant\\n' + message['content'][0]['text'] + '<end_of_sentence>\\n'}}{% elif message['role'] == 'user' %}{{ '<beginning_of_sentence>user name=user\\n' + message['content'][0]['text'] + '<end_of_sentence>\\n'}}{% elif message['role'] == 'assistant' %}{{ '<beginning_of_sentence>ai name=assistant\\n' }}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] }}{% endgeneration %}{% endfor %}{{ '<end_of_sentence>\\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<beginning_of_sentence>ai name=assistant\\n' }}{% endif %}"
10
  }
 
6
  "model_max_length": 40960000,
7
  "tokenizer_class": "GPT2Tokenizer",
8
  "unk_token": "<end_of_document>",
9
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'system' %}{{ '<beginning_of_sentence>system ai_setting=assistant\\n' + message['content'][0]['text'] + '<end_of_sentence>\\n'}}{% elif message['role'] == 'user' %}{{ '<beginning_of_sentence>user name=user\\n' + message['content'][0]['text'] + '<end_of_sentence>\\n'}}{% elif message['role'] == 'assistant' %}{{ '<beginning_of_sentence>ai name=assistant\\n' }}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] }}{% endgeneration %}{% endfor %}{{ '<end_of_sentence>\\n' }}{% elif message['role'] == 'function' %}{{ '<beginning_of_sentence>system function_response=functions\\n' + '{\"name\": \"' + message['name'] + '\", \"response\": ' + message['content'][0]['text'] + '}' + '<end_of_sentence>\\n'}}{% endif %}{% endfor %}{% if tools %}{% for function in tools %}{{ '<beginning_of_sentence>system function_setting=functions\\n' + function | tojson + '<end_of_sentence>\\n'}}{% endfor %}{% endif %}{% if add_generation_prompt %}{{ '<beginning_of_sentence>ai name=assistant\\n' }}{% endif %}"
10
  }