INFERENCE
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained("Mr-Vicky-01/QnA-router")
model = AutoModelForSequenceClassification.from_pretrained("Mr-Vicky-01/QnA-router")
model.to(device)
model.eval()
def preprocess_input(pre_conversation, question):
if pre_conversation:
input_text = pre_conversation + "[SEP]" + question
else:
input_text = question
return input_text
def predict(pre_conversation, question):
input_text = preprocess_input(pre_conversation, question)
print(f"Processed input: {input_text}")
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
inputs = {key: value.to(device) for key, value in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_id = torch.argmax(logits, dim=1).item()
predicted_label = model.config.id2label[predicted_class_id]
return predicted_label
single_question = "make a python code"
print("\nPredicting for single question...")
result = predict(pre_conversation="", question=single_question)
print(f"Predicted model: {result}")
# Example 2: Pre-conversation + new question
pre_conversation = "hi[SEP]Hello! How can I help you today?[SEP]how are you[SEP]I'm doing great, thanks for asking! What about you?"
new_question = "what is AI"
print("\nPredicting for conversation + new question...")
result = predict(pre_conversation=pre_conversation, question=new_question)
print(f"Predicted model: {result}")
- Downloads last month
- 32
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support