mt5-small-finetune-finetuned-research-papers-XX
This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.5181
- Rouge1: 37.7539
- Rouge2: 18.9504
- Rougel: 33.145
- Rougelsum: 33.1903
- Gen Len: 16.3255
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
2.8525 | 0.5 | 500 | 2.6013 | 36.7086 | 17.6689 | 31.9973 | 32.0291 | 16.3635 |
2.8439 | 1.0 | 1000 | 2.6248 | 37.6033 | 18.3621 | 32.8963 | 32.9445 | 16.497 |
2.7426 | 1.5 | 1500 | 2.5630 | 36.6049 | 17.5093 | 31.9676 | 31.9867 | 16.1745 |
2.714 | 2.0 | 2000 | 2.5636 | 37.1961 | 18.0863 | 32.5238 | 32.5846 | 16.397 |
2.6864 | 2.5 | 2500 | 2.5606 | 37.9728 | 18.93 | 33.351 | 33.374 | 16.2275 |
2.7265 | 3.0 | 3000 | 2.5343 | 37.5678 | 18.7011 | 33.0497 | 33.083 | 16.3985 |
2.7086 | 3.5 | 3500 | 2.5322 | 37.8949 | 18.8538 | 33.1814 | 33.2308 | 16.342 |
2.7841 | 4.0 | 4000 | 2.5181 | 37.7539 | 18.9504 | 33.145 | 33.1903 | 16.3255 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Mug3n24/mt5-small-finetune-finetuned-research-papers-XX
Base model
google/mt5-small