Text Generation
Transformers
GGUF
English
code
Eval Results
imatrix
File size: 26,495 Bytes
e2edd48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
---
pipeline_tag: text-generation
inference: true
widget:
- text: 'def print_hello_world():'
  example_title: Hello world
  group: Python
license: bigscience-openrail-m
pretrain-datasets:
- books
- arxiv
- c4
- falcon-refinedweb
- wiki
- github-issues
- stack_markdown
- self-made dataset of permissive github code
datasets:
- bigcode/the-stack-dedup
- rombodawg/2XUNCENSORED_MegaCodeTraining188k
- bigcode/commitpackft
metrics:
- code_eval
library_name: transformers
tags:
- code
model-index:
- name: Refact-1.6B
  results:
  - task:
      type: text-generation
    dataset:
      type: openai_humaneval
      name: HumanEval
    metrics:
    - name: pass@1 (T=0.01)
      type: pass@1
      value: 32.0
      verified: false
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 31.5
      verified: false
    - name: pass@10 (T=0.8)
      type: pass@10
      value: 53.0
      verified: false
    - name: pass@100 (T=0.8)
      type: pass@100
      value: 76.9
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalSynthesize Python
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 35.8
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalSynthesize JavaScript
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 31.6
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalSynthesize Java
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 29.1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalSynthesize Go
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: -1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalSynthesize C++
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 26.3
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalSynthesize Rust
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: -1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalSynthesize Average
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: -1
      verified: false




      
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFixTests Python
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 18.38
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFixTests JavaScript
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 12.28
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFixTests Java
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 15.12
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFixTests Go
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: -1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFixTests C++
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 13.17
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFixTests Rust
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 2.8
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFixTests Average
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: -1
      verified: false





      
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFixDocs Python
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 26.92
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFixDocs JavaScript
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 26.85
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFixDocs Java
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 30.76
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFixDocs Go
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: -1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFixDocs C++
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 25.94
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFixDocs Rust
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 8.44
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalFixDocs Average
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: -1
      verified: false



     
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalExplain Python
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 26.46
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalExplain JavaScript
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 17.86
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalExplain Java
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 20.94
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalExplain Go
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: -1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalExplain C++
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 18.78
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalExplain Rust
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: -1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: bigcode/humanevalpack
      name: HumanEvalExplain Average
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: -1
      verified: false


  - task:
      type: text-generation
    dataset:
      type: mbpp
      name: MBPP
    metrics:
    - name: pass@1 (T=0.01)
      type: pass@1
      value: 31.15
      verified: false
  - task:
      type: text-generation
    dataset:
      type: ds1000
      name: DS-1000 (Overall Completion)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 10.1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (C++)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 21.61
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (C#)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 13.91
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (D)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 9.5
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Go)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 53.57
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Java)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 21.58
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Julia)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 13.75
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (JavaScript)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 26.88
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Lua)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 15.26
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (PHP)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 23.04
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Perl)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 12.1
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Python)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 29.6
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (R)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 13.77
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Ruby)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 12.68
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Racket)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 4.29
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Rust)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 19.54
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Scala)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 18.33
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Bash)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 5.7
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (Swift)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 17.68
      verified: false
  - task:
      type: text-generation
    dataset:
      type: nuprl/MultiPL-E
      name: MultiPL-HumanEval (TypeScript)
    metrics:
    - name: pass@1 (T=0.2)
      type: pass@1
      value: 25
      verified: false

language:
- en
---

# <span style="color: #7FFF7F;">Refact-1_6B-fim GGUF Models</span>

## **Choosing the Right Model Format**  

Selecting the correct model format depends on your **hardware capabilities** and **memory constraints**.  

### **BF16 (Brain Float 16) – Use if BF16 acceleration is available**  
- A 16-bit floating-point format designed for **faster computation** while retaining good precision.  
- Provides **similar dynamic range** as FP32 but with **lower memory usage**.  
- Recommended if your hardware supports **BF16 acceleration** (check your device’s specs).  
- Ideal for **high-performance inference** with **reduced memory footprint** compared to FP32.  

📌 **Use BF16 if:**  
✔ Your hardware has native **BF16 support** (e.g., newer GPUs, TPUs).  
✔ You want **higher precision** while saving memory.  
✔ You plan to **requantize** the model into another format.  

📌 **Avoid BF16 if:**  
❌ Your hardware does **not** support BF16 (it may fall back to FP32 and run slower).  
❌ You need compatibility with older devices that lack BF16 optimization.  

---

### **F16 (Float 16) – More widely supported than BF16**  
- A 16-bit floating-point **high precision** but with less of range of values than BF16. 
- Works on most devices with **FP16 acceleration support** (including many GPUs and some CPUs).  
- Slightly lower numerical precision than BF16 but generally sufficient for inference.  

📌 **Use F16 if:**  
✔ Your hardware supports **FP16** but **not BF16**.  
✔ You need a **balance between speed, memory usage, and accuracy**.  
✔ You are running on a **GPU** or another device optimized for FP16 computations.  

📌 **Avoid F16 if:**  
❌ Your device lacks **native FP16 support** (it may run slower than expected).  
❌ You have memory limitations.  

---

### **Quantized Models (Q4_K, Q6_K, Q8, etc.) – For CPU & Low-VRAM Inference**  
Quantization reduces model size and memory usage while maintaining as much accuracy as possible.  
- **Lower-bit models (Q4_K)****Best for minimal memory usage**, may have lower precision.  
- **Higher-bit models (Q6_K, Q8_0)****Better accuracy**, requires more memory.  

📌 **Use Quantized Models if:**  
✔ You are running inference on a **CPU** and need an optimized model.  
✔ Your device has **low VRAM** and cannot load full-precision models.  
✔ You want to reduce **memory footprint** while keeping reasonable accuracy.  

📌 **Avoid Quantized Models if:**  
❌ You need **maximum accuracy** (full-precision models are better for this).  
❌ Your hardware has enough VRAM for higher-precision formats (BF16/F16).  

---

### **Very Low-Bit Quantization (IQ3_XS, IQ3_S, IQ3_M, Q4_K, Q4_0)**  
These models are optimized for **extreme memory efficiency**, making them ideal for **low-power devices** or **large-scale deployments** where memory is a critical constraint.  

- **IQ3_XS**: Ultra-low-bit quantization (3-bit) with **extreme memory efficiency**.  
  - **Use case**: Best for **ultra-low-memory devices** where even Q4_K is too large.  
  - **Trade-off**: Lower accuracy compared to higher-bit quantizations.  

- **IQ3_S**: Small block size for **maximum memory efficiency**.  
  - **Use case**: Best for **low-memory devices** where **IQ3_XS** is too aggressive.  

- **IQ3_M**: Medium block size for better accuracy than **IQ3_S**.  
  - **Use case**: Suitable for **low-memory devices** where **IQ3_S** is too limiting.  

- **Q4_K**: 4-bit quantization with **block-wise optimization** for better accuracy.  
  - **Use case**: Best for **low-memory devices** where **Q6_K** is too large.  

- **Q4_0**: Pure 4-bit quantization, optimized for **ARM devices**.  
  - **Use case**: Best for **ARM-based devices** or **low-memory environments**.  

---

### **Summary Table: Model Format Selection**  

| Model Format  | Precision  | Memory Usage  | Device Requirements  | Best Use Case  |  
|--------------|------------|---------------|----------------------|---------------|  
| **BF16**     | Highest    | High          | BF16-supported GPU/CPUs  | High-speed inference with reduced memory |  
| **F16**      | High       | High          | FP16-supported devices | GPU inference when BF16 isn’t available |  
| **Q4_K**     | Medium Low | Low           | CPU or Low-VRAM devices | Best for memory-constrained environments |  
| **Q6_K**     | Medium     | Moderate      | CPU with more memory | Better accuracy while still being quantized |  
| **Q8_0**     | High       | Moderate      | CPU or GPU with enough VRAM | Best accuracy among quantized models |  
| **IQ3_XS**   | Very Low   | Very Low      | Ultra-low-memory devices | Extreme memory efficiency and low accuracy |  
| **Q4_0**     | Low        | Low           | ARM or low-memory devices | llama.cpp can optimize for ARM devices |  

---

## **Included Files & Details**  

### `Refact-1_6B-fim-bf16.gguf`  
- Model weights preserved in **BF16**.  
- Use this if you want to **requantize** the model into a different format.  
- Best if your device supports **BF16 acceleration**.  

### `Refact-1_6B-fim-f16.gguf`  
- Model weights stored in **F16**.  
- Use if your device supports **FP16**, especially if BF16 is not available.  

### `Refact-1_6B-fim-bf16-q8_0.gguf`  
- **Output & embeddings** remain in **BF16**.  
- All other layers quantized to **Q8_0**.  
- Use if your device supports **BF16** and you want a quantized version.  

### `Refact-1_6B-fim-f16-q8_0.gguf`  
- **Output & embeddings** remain in **F16**.  
- All other layers quantized to **Q8_0**.    

### `Refact-1_6B-fim-q4_k.gguf`  
- **Output & embeddings** quantized to **Q8_0**.  
- All other layers quantized to **Q4_K**.  
- Good for **CPU inference** with limited memory.  

### `Refact-1_6B-fim-q4_k_s.gguf`  
- Smallest **Q4_K** variant, using less memory at the cost of accuracy.  
- Best for **very low-memory setups**.  

### `Refact-1_6B-fim-q6_k.gguf`  
- **Output & embeddings** quantized to **Q8_0**.  
- All other layers quantized to **Q6_K** .  

### `Refact-1_6B-fim-q8_0.gguf`  
- Fully **Q8** quantized model for better accuracy.  
- Requires **more memory** but offers higher precision.  

### `Refact-1_6B-fim-iq3_xs.gguf`  
- **IQ3_XS** quantization, optimized for **extreme memory efficiency**.  
- Best for **ultra-low-memory devices**.  

### `Refact-1_6B-fim-iq3_m.gguf`  
- **IQ3_M** quantization, offering a **medium block size** for better accuracy.  
- Suitable for **low-memory devices**.  

### `Refact-1_6B-fim-q4_0.gguf`  
- Pure **Q4_0** quantization, optimized for **ARM devices**.  
- Best for **low-memory environments**.
- Prefer IQ4_NL for better accuracy.

# <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>

Please click like ❤ . Also I’d really appreciate it if you could test my Network Monitor Assistant at 👉 [Network Monitor Assitant](https://freenetworkmonitor.click/dashboard).

💬 Click the **chat icon** (bottom right of the main and dashboard pages) . Choose a LLM; toggle between the LLM Types TurboLLM -> FreeLLM -> TestLLM.

### What I'm Testing

I'm experimenting with **function calling** against my network monitoring service. Using small open source models. I am into the question "How small can it go and still function".

🟡 **TestLLM** – Runs the current testing model using llama.cpp on 6 threads of a Cpu VM (Should take about 15s to load. Inference speed is quite slow and it only processes one user prompt at a time—still working on scaling!). If you're curious, I'd be happy to share how it works! .

### The other Available AI Assistants

🟢 **TurboLLM** – Uses **gpt-4o-mini** Fast! . Note: tokens are limited since OpenAI models are pricey, but you can [Login](https://freenetworkmonitor.click) or [Download](https://freenetworkmonitor.click/download) the Free Network Monitor agent to get more tokens, Alternatively use the FreeLLM .

🔵 **FreeLLM** – Runs **open-source Hugging Face models** Medium speed (unlimited, subject to Hugging Face API availability).




![image/png](https://cdn-uploads.huggingface.co/production/uploads/643a9dd0c5f633a7fa7e804a/HkB0QYV0BbmB3ktMugbZy.png)


# Refact-1.6B

Finally, the model we started training with our [blog post](https://refact.ai/blog/2023/applying-recent-innovations-to-train-model/) is ready 🎉

After fine-tuning on generated data, it beats Replit 3b, Stability Code 3b and many other models. It almost beats
StarCoder ten times the size!


Model                 | Size          | HumanEval pass@1   | HumanEval pass@10  |
----------------------|---------------|--------------------|--------------------|
DeciCoder-1b          |   1b          |  19.1%             |                    |
<b>Refact-1.6-fim</b> | <b>1.6b</b>   |  <b>32.0%</b>      | <b>53.0%</b>       |
StableCode            |   3b          |  20.2%             | 33.8%              |
ReplitCode v1         |   3b          |  21.9%             |                    |
CodeGen2.5-multi      |   7b          |  28.4%             | 47.5%              |
CodeLlama             |   7b          |  33.5%             | 59.6%              |
StarCoder             |  15b          |  33.6%             |                    |

Likely, it's the best model for practical use in your IDE for code completion because it's smart and fast!
You can start using it right now by downloading the
[Refact plugin](https://refact.ai/). You can host the model yourself, too, using the
[open source docker container](https://github.com/smallcloudai/refact).

And it's multi-language (see MultiPL-HumanEval and other metrics below) and it works as a chat (see the section below).

# It Works As a Chat

The primary application of this model is code completion (infill) in multiple programming languages.
But it works as a chat quite well.

HumanEval results using instruction following (chat) format, against models specialized for chat only:

Model                  | Size   | pass@1   | pass@10  |
-----------------------|--------|----------|----------|
<b>Refact-1.6-fim</b>  | 1.6b   |  38.4%   | 55.6%    |
StableCode-instruct    |   3b   |  26.9%   | 36.2%    |
OctoGeeX               |   6b   |  44.7%   |          |
CodeLlama-instruct     |   7b   |  34.8%   | 64.3%    |
CodeGen2.5-instruct    |   7b   |  36.2%   | 60.87    |
CodeLlama-instruct     |  13b   |  42.7%   | 71.6%    |
StarChat-β             |  15b   |  33.5%   |          |
OctoCoder              |  15b   |  46.2%   |          |


# Example

Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:

```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "smallcloudai/Refact-1_6B-fim"
device = "cuda" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True).to(device)

prompt = '<fim_prefix>def print_hello_world():\n    """<fim_suffix>\n    print("Hello world!")<fim_middle>'

inputs = tokenizer.encode(prompt, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_length=100, temperature=0.2)
print("-"*80)
print(tokenizer.decode(outputs[0]))
```

# Chat Format

The same model works as chat (experimental).

```python
prompt_template = "<empty_output>SYSTEM {system}\n" \
                  "<empty_output>USER {query}\n" \
                  "<empty_output>ASSISTANT"
prompt = prompt_template.format(system="You are a programming assistant",
                                query="How do I sort a list in Python?")
```

# Architecture

As described in more detail in the blog post, we used:

- [ALiBi](https://arxiv.org/abs/2108.12409) based attention
- [LayerNorm](https://arxiv.org/abs/1607.06450v1) instead of [RMSNorm](https://arxiv.org/pdf/1910.07467.pdf)
- [Multi Query Attention](https://arxiv.org/abs/1911.02150)

We also used LiON, flash attention, early dropout. It's not that innovative that you can't run it, in fact you can -- see an example below.


# Pretraining

For the base model, we used our own dataset that contains code with permissive licenses only, and open text datasets.
Filtering is the key to success of this model:

- We only used text in English
- Only topics related to computer science
- Applied heavy deduplication

The text to code proportion was 50:50, model trained for 1.2T tokens. 

We don't release the base model, because its Fill-in-the-Middle (FIM) capability likes to repeat itself too much, so
its practical use is limited. But if you still want it, write us a message on Discord.


# Finetuning

We tested our hypothesis that chat data should boost base model performance in FIM and
regular left-to-right code completion. We found that just 15% of open
[code](https://huggingface.co/datasets/bigcode/commitpackft)
[instruction-following](https://huggingface.co/datasets/rombodawg/2XUNCENSORED_MegaCodeTraining188k) datasets,
that we filtered for quality, improves almost all metrics.

Additionally, to improve FIM, we observed common failure modes, and prepared a synthetic dataset based on
[The Stack dedup v1.1](https://huggingface.co/datasets/bigcode/the-stack-dedup) to address them.

There is a distribution shift between typical code on the internet, and the code you write in your IDE.
The former is likely finished, so the model tries to come up with a suggestion that makes the code complete.
You are likely to have half-written code as you work on it, there is no single addition that can repair it
fully.

In practice, model needs to have a tendency to stop after a couple of lines are added, and sometimes don't write
anything at all. We found that just giving it empty completions, single line completions, multiline
completions that end with a smaller text indent or at least a newline -- makes it much more usable. This data
was used as the rest 85% of the finetune dataset.

The final model is the result of several attempts to make it work as good as possible for code completion,
and to perform well on a wide range of metrics. The best attempt took 40B tokens.


# Limitations and Bias

The Refact-1.6B model was trained on text in English. But it has seen a lot more languages in
code comments. Its performance on non-English languages is lower, for sure.


# Model Stats

- **Architecture:** LLAMA-like model with multi-query attention
- **Objectives** Fill-in-the-Middle, Chat
- **Tokens context:** 4096
- **Pretraining tokens:** 1.2T
- **Finetuning tokens:** 40B
- **Precision:** bfloat16
- **GPUs** 64 NVidia A5000
- **Training time** 28 days


# License

The model is licensed under the BigScience OpenRAIL-M v1 license agreement


# Citation

If you are using this model, please give a link to this page.