|
# NanoTranslator-immersive_translate-365M |
|
|
|
[English](README.md) | 简体中文 |
|
|
|
## Introduction |
|
|
|
NanoTranslator-immersive_translate-365M 是由 [NanoLM-365M-Base](https://huggingface.co/Mxode/NanoLM-365M-Base) 在 [wmt-19](https://huggingface.co/datasets/wmt/wmt19) 数据集上训练了 600 万数据得来的专门用于**中英双语**的翻译模型。 |
|
|
|
此模型遵循[沉浸式翻译](https://immersivetranslate.com/)(Immersive Translate)的 prompt 格式进行训练,可以通过 vllm、lmdeploy 等方式部署为 OpenAI 格式接口,从而完成调用。 |
|
|
|
## How to use |
|
|
|
下面是一个用 transformers 调用的方式,prompt 遵循沉浸式翻译以保持最佳效果。 |
|
|
|
```python |
|
import torch |
|
from typing import Literal |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_path = 'Mxode/NanoTranslator-immersive_translate-365M' |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda:0', torch.bfloat16) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
def translate( |
|
text: str, |
|
to: Literal["chinese", "english"] = "chinese", |
|
**kwargs |
|
): |
|
generation_args = dict( |
|
max_new_tokens = kwargs.pop("max_new_tokens", 512), |
|
do_sample = kwargs.pop("do_sample", True), |
|
temperature = kwargs.pop("temperature", 0.35), |
|
top_p = kwargs.pop("top_p", 0.8), |
|
top_k = kwargs.pop("top_k", 40), |
|
**kwargs |
|
) |
|
|
|
prompt = """Translate the following source text to {to}. Output translation directly without any additional text. |
|
Source Text: {text} |
|
|
|
Translated Text:""" |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a professional, authentic machine translation engine."}, |
|
{"role": "user", "content": prompt.format(to=to, text=text)} |
|
] |
|
inputs = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([inputs], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate(model_inputs.input_ids, **generation_args) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
return response |
|
|
|
text = "After a long day at work, I love to unwind by cooking a nice dinner and watching my favorite TV series. It really helps me relax and recharge for the next day." |
|
response = translate(text=text, to='chinese') |
|
print(f'Translation: {response}') |
|
|
|
""" |
|
Translation: 工作了一天,我喜欢吃一顿美味的晚餐,看我最喜欢的电视剧,这样做有助于我放松,补充能量。 |
|
""" |
|
``` |