segformer-b0-finetuned-morphpadver1-hgo-coord-v1
This model is a fine-tuned version of nvidia/mit-b1 on the NICOPOI-9/morphpad_coord_hgo_512_4class dataset. It achieves the following results on the evaluation set:
- Loss: 0.0644
- Mean Iou: 0.9579
- Mean Accuracy: 0.9785
- Overall Accuracy: 0.9785
- Accuracy 0-0: 0.9792
- Accuracy 0-90: 0.9782
- Accuracy 90-0: 0.9762
- Accuracy 90-90: 0.9804
- Iou 0-0: 0.9634
- Iou 0-90: 0.9512
- Iou 90-0: 0.9543
- Iou 90-90: 0.9627
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1962 | 2.5445 | 4000 | 1.2063 | 0.2464 | 0.3994 | 0.4010 | 0.2991 | 0.2803 | 0.5096 | 0.5084 | 0.2367 | 0.2111 | 0.2658 | 0.2721 |
1.051 | 5.0891 | 8000 | 1.0734 | 0.3118 | 0.4765 | 0.4765 | 0.3856 | 0.5520 | 0.3937 | 0.5745 | 0.3123 | 0.3148 | 0.2968 | 0.3233 |
0.9309 | 7.6336 | 12000 | 0.9672 | 0.3612 | 0.5314 | 0.5323 | 0.4806 | 0.5216 | 0.7075 | 0.4158 | 0.3362 | 0.3706 | 0.3778 | 0.3603 |
0.8041 | 10.1781 | 16000 | 0.8444 | 0.4475 | 0.6180 | 0.6178 | 0.6131 | 0.6672 | 0.6120 | 0.5798 | 0.4403 | 0.4360 | 0.4543 | 0.4593 |
0.6617 | 12.7226 | 20000 | 0.7405 | 0.5039 | 0.6697 | 0.6700 | 0.6310 | 0.6588 | 0.6714 | 0.7177 | 0.5097 | 0.4912 | 0.5114 | 0.5033 |
0.54 | 15.2672 | 24000 | 0.6090 | 0.5828 | 0.7360 | 0.7362 | 0.6931 | 0.7532 | 0.7427 | 0.7550 | 0.5911 | 0.5709 | 0.5876 | 0.5819 |
0.7378 | 17.8117 | 28000 | 0.3740 | 0.7401 | 0.8507 | 0.8505 | 0.8789 | 0.8270 | 0.8186 | 0.8783 | 0.7712 | 0.7324 | 0.7203 | 0.7366 |
0.58 | 20.3562 | 32000 | 0.1892 | 0.8644 | 0.9272 | 0.9272 | 0.9329 | 0.9188 | 0.9142 | 0.9430 | 0.8810 | 0.8523 | 0.8539 | 0.8704 |
0.1305 | 22.9008 | 36000 | 0.1473 | 0.8945 | 0.9443 | 0.9443 | 0.9563 | 0.9245 | 0.9421 | 0.9542 | 0.9021 | 0.8783 | 0.8925 | 0.9049 |
0.1775 | 25.4453 | 40000 | 0.1133 | 0.9178 | 0.9571 | 0.9571 | 0.9578 | 0.9536 | 0.9583 | 0.9586 | 0.9264 | 0.9068 | 0.9130 | 0.9249 |
0.4792 | 27.9898 | 44000 | 0.0961 | 0.9306 | 0.9640 | 0.9640 | 0.9662 | 0.9633 | 0.9617 | 0.9650 | 0.9374 | 0.9194 | 0.9268 | 0.9387 |
0.1084 | 30.5344 | 48000 | 0.0886 | 0.9364 | 0.9671 | 0.9672 | 0.9684 | 0.9600 | 0.9689 | 0.9712 | 0.9429 | 0.9257 | 0.9335 | 0.9437 |
0.0471 | 33.0789 | 52000 | 0.0721 | 0.9485 | 0.9735 | 0.9735 | 0.9772 | 0.9674 | 0.9729 | 0.9767 | 0.9528 | 0.9402 | 0.9467 | 0.9542 |
0.0722 | 35.6234 | 56000 | 0.0646 | 0.9554 | 0.9772 | 0.9772 | 0.9809 | 0.9728 | 0.9757 | 0.9794 | 0.9576 | 0.9488 | 0.9522 | 0.9629 |
0.0406 | 38.1679 | 60000 | 0.0644 | 0.9579 | 0.9785 | 0.9785 | 0.9792 | 0.9782 | 0.9762 | 0.9804 | 0.9634 | 0.9512 | 0.9543 | 0.9627 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.1.0
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 30
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support