End of training
Browse files- README.md +93 -199
- config.json +82 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,93 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: nvidia/mit-b2
|
5 |
+
tags:
|
6 |
+
- vision
|
7 |
+
- image-segmentation
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: segformer-b0-finetuned-morphpadver1-hgo-coord-v2
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# segformer-b0-finetuned-morphpadver1-hgo-coord-v2
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the NICOPOI-9/morphpad_coord_hgo_512_4class dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.2286
|
22 |
+
- Mean Iou: 0.8128
|
23 |
+
- Mean Accuracy: 0.8969
|
24 |
+
- Overall Accuracy: 0.8968
|
25 |
+
- Accuracy 0-0: 0.9119
|
26 |
+
- Accuracy 0-90: 0.8833
|
27 |
+
- Accuracy 90-0: 0.8951
|
28 |
+
- Accuracy 90-90: 0.8974
|
29 |
+
- Iou 0-0: 0.8200
|
30 |
+
- Iou 0-90: 0.8185
|
31 |
+
- Iou 90-0: 0.8144
|
32 |
+
- Iou 90-90: 0.7983
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 6e-05
|
52 |
+
- train_batch_size: 1
|
53 |
+
- eval_batch_size: 1
|
54 |
+
- seed: 42
|
55 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 60
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
|
62 |
+
|:-------------:|:-------:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:-------------:|:-------------:|:--------------:|:-------:|:--------:|:--------:|:---------:|
|
63 |
+
| 1.1507 | 2.5445 | 4000 | 1.1730 | 0.2502 | 0.4074 | 0.4084 | 0.4143 | 0.2410 | 0.6535 | 0.3208 | 0.2753 | 0.2079 | 0.2790 | 0.2385 |
|
64 |
+
| 1.0135 | 5.0891 | 8000 | 0.9857 | 0.3270 | 0.4992 | 0.4961 | 0.6108 | 0.4085 | 0.3399 | 0.6378 | 0.3508 | 0.3116 | 0.3093 | 0.3363 |
|
65 |
+
| 0.8651 | 7.6336 | 12000 | 0.8655 | 0.3997 | 0.5634 | 0.5652 | 0.4675 | 0.8101 | 0.4588 | 0.5172 | 0.4234 | 0.3705 | 0.3925 | 0.4123 |
|
66 |
+
| 0.7904 | 10.1781 | 16000 | 0.7801 | 0.4485 | 0.6141 | 0.6147 | 0.5644 | 0.4939 | 0.8116 | 0.5863 | 0.4541 | 0.4593 | 0.4161 | 0.4645 |
|
67 |
+
| 0.9002 | 12.7226 | 20000 | 0.7177 | 0.4769 | 0.6460 | 0.6457 | 0.6775 | 0.6256 | 0.6334 | 0.6475 | 0.4691 | 0.4874 | 0.4857 | 0.4657 |
|
68 |
+
| 0.6111 | 15.2672 | 24000 | 0.6339 | 0.5288 | 0.6790 | 0.6814 | 0.6149 | 0.9232 | 0.6051 | 0.5727 | 0.5528 | 0.4628 | 0.5587 | 0.5409 |
|
69 |
+
| 0.5422 | 17.8117 | 28000 | 0.5576 | 0.5788 | 0.7312 | 0.7300 | 0.6673 | 0.7190 | 0.6918 | 0.8469 | 0.6206 | 0.5811 | 0.5793 | 0.5340 |
|
70 |
+
| 0.5594 | 20.3562 | 32000 | 0.5073 | 0.6016 | 0.7470 | 0.7482 | 0.7632 | 0.7259 | 0.8431 | 0.6558 | 0.5749 | 0.6233 | 0.5720 | 0.6361 |
|
71 |
+
| 0.6542 | 22.9008 | 36000 | 0.4921 | 0.6137 | 0.7580 | 0.7590 | 0.7073 | 0.8514 | 0.7415 | 0.7320 | 0.6381 | 0.5894 | 0.6460 | 0.5813 |
|
72 |
+
| 0.4827 | 25.4453 | 40000 | 0.4701 | 0.6321 | 0.7736 | 0.7730 | 0.7499 | 0.7378 | 0.7800 | 0.8268 | 0.6531 | 0.6572 | 0.6355 | 0.5827 |
|
73 |
+
| 0.3901 | 27.9898 | 44000 | 0.4068 | 0.6747 | 0.8050 | 0.8052 | 0.8030 | 0.7737 | 0.8480 | 0.7955 | 0.6972 | 0.6956 | 0.6582 | 0.6477 |
|
74 |
+
| 0.4725 | 30.5344 | 48000 | 0.3738 | 0.6928 | 0.8180 | 0.8180 | 0.8152 | 0.7977 | 0.8433 | 0.8158 | 0.7242 | 0.7024 | 0.6954 | 0.6492 |
|
75 |
+
| 0.3067 | 33.0789 | 52000 | 0.3493 | 0.7223 | 0.8367 | 0.8374 | 0.8139 | 0.8374 | 0.8924 | 0.8029 | 0.7510 | 0.7253 | 0.6839 | 0.7290 |
|
76 |
+
| 0.4898 | 35.6234 | 56000 | 0.3349 | 0.7197 | 0.8369 | 0.8368 | 0.8726 | 0.8097 | 0.8431 | 0.8221 | 0.7006 | 0.7348 | 0.7254 | 0.7179 |
|
77 |
+
| 0.2826 | 38.1679 | 60000 | 0.3021 | 0.7503 | 0.8563 | 0.8569 | 0.8839 | 0.8769 | 0.8603 | 0.8041 | 0.7457 | 0.7359 | 0.7530 | 0.7668 |
|
78 |
+
| 0.3235 | 40.7125 | 64000 | 0.2863 | 0.7561 | 0.8612 | 0.8610 | 0.8758 | 0.8490 | 0.8598 | 0.8601 | 0.7478 | 0.7821 | 0.7630 | 0.7316 |
|
79 |
+
| 0.3374 | 43.2570 | 68000 | 0.2927 | 0.7689 | 0.8668 | 0.8674 | 0.8621 | 0.8328 | 0.9457 | 0.8266 | 0.7827 | 0.8025 | 0.7194 | 0.7708 |
|
80 |
+
| 0.2588 | 45.8015 | 72000 | 0.2737 | 0.7743 | 0.8716 | 0.8717 | 0.9129 | 0.8702 | 0.8653 | 0.8380 | 0.7254 | 0.7849 | 0.8016 | 0.7852 |
|
81 |
+
| 0.5224 | 48.3461 | 76000 | 0.2579 | 0.7905 | 0.8819 | 0.8822 | 0.9212 | 0.8628 | 0.9067 | 0.8367 | 0.7605 | 0.8124 | 0.7815 | 0.8075 |
|
82 |
+
| 0.2171 | 50.8906 | 80000 | 0.2373 | 0.7971 | 0.8867 | 0.8870 | 0.9187 | 0.8895 | 0.8875 | 0.8512 | 0.7941 | 0.7931 | 0.7986 | 0.8025 |
|
83 |
+
| 0.2075 | 53.4351 | 84000 | 0.2374 | 0.8051 | 0.8912 | 0.8916 | 0.9032 | 0.9120 | 0.8891 | 0.8608 | 0.8289 | 0.7819 | 0.8033 | 0.8064 |
|
84 |
+
| 0.3577 | 55.9796 | 88000 | 0.2390 | 0.8081 | 0.8931 | 0.8935 | 0.9098 | 0.9007 | 0.9072 | 0.8545 | 0.8076 | 0.7889 | 0.8134 | 0.8224 |
|
85 |
+
| 0.2084 | 58.5242 | 92000 | 0.2286 | 0.8128 | 0.8969 | 0.8968 | 0.9119 | 0.8833 | 0.8951 | 0.8974 | 0.8200 | 0.8185 | 0.8144 | 0.7983 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.48.3
|
91 |
+
- Pytorch 2.1.0
|
92 |
+
- Datasets 3.2.0
|
93 |
+
- Tokenizers 0.21.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b2",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
4,
|
12 |
+
6,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "0-0",
|
32 |
+
"1": "0-90",
|
33 |
+
"2": "90-0",
|
34 |
+
"3": "90-90"
|
35 |
+
},
|
36 |
+
"image_size": 224,
|
37 |
+
"initializer_range": 0.02,
|
38 |
+
"label2id": {
|
39 |
+
"0-0": 0,
|
40 |
+
"0-90": 1,
|
41 |
+
"90-0": 2,
|
42 |
+
"90-90": 3
|
43 |
+
},
|
44 |
+
"layer_norm_eps": 1e-06,
|
45 |
+
"mlp_ratios": [
|
46 |
+
4,
|
47 |
+
4,
|
48 |
+
4,
|
49 |
+
4
|
50 |
+
],
|
51 |
+
"model_type": "segformer",
|
52 |
+
"num_attention_heads": [
|
53 |
+
1,
|
54 |
+
2,
|
55 |
+
5,
|
56 |
+
8
|
57 |
+
],
|
58 |
+
"num_channels": 3,
|
59 |
+
"num_encoder_blocks": 4,
|
60 |
+
"patch_sizes": [
|
61 |
+
7,
|
62 |
+
3,
|
63 |
+
3,
|
64 |
+
3
|
65 |
+
],
|
66 |
+
"reshape_last_stage": true,
|
67 |
+
"semantic_loss_ignore_index": 255,
|
68 |
+
"sr_ratios": [
|
69 |
+
8,
|
70 |
+
4,
|
71 |
+
2,
|
72 |
+
1
|
73 |
+
],
|
74 |
+
"strides": [
|
75 |
+
4,
|
76 |
+
2,
|
77 |
+
2,
|
78 |
+
2
|
79 |
+
],
|
80 |
+
"torch_dtype": "float32",
|
81 |
+
"transformers_version": "4.48.3"
|
82 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b64397289bc17483c769ceaf00998d9e238e683091fed7dbcfbb32ab66525a2
|
3 |
+
size 109450168
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24411a836223d859e5eef1d3f244d80368a3934e3df7e1450d60112276621708
|
3 |
+
size 5432
|