NICOPOI-9 commited on
Commit
c6374e5
·
verified ·
1 Parent(s): fa507e4

End of training

Browse files
Files changed (4) hide show
  1. README.md +93 -199
  2. config.json +82 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,93 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: nvidia/mit-b2
5
+ tags:
6
+ - vision
7
+ - image-segmentation
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: segformer-b0-finetuned-morphpadver1-hgo-coord-v2
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # segformer-b0-finetuned-morphpadver1-hgo-coord-v2
18
+
19
+ This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the NICOPOI-9/morphpad_coord_hgo_512_4class dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.2286
22
+ - Mean Iou: 0.8128
23
+ - Mean Accuracy: 0.8969
24
+ - Overall Accuracy: 0.8968
25
+ - Accuracy 0-0: 0.9119
26
+ - Accuracy 0-90: 0.8833
27
+ - Accuracy 90-0: 0.8951
28
+ - Accuracy 90-90: 0.8974
29
+ - Iou 0-0: 0.8200
30
+ - Iou 0-90: 0.8185
31
+ - Iou 90-0: 0.8144
32
+ - Iou 90-90: 0.7983
33
+
34
+ ## Model description
35
+
36
+ More information needed
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 6e-05
52
+ - train_batch_size: 1
53
+ - eval_batch_size: 1
54
+ - seed: 42
55
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
56
+ - lr_scheduler_type: linear
57
+ - num_epochs: 60
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
62
+ |:-------------:|:-------:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:-------------:|:-------------:|:--------------:|:-------:|:--------:|:--------:|:---------:|
63
+ | 1.1507 | 2.5445 | 4000 | 1.1730 | 0.2502 | 0.4074 | 0.4084 | 0.4143 | 0.2410 | 0.6535 | 0.3208 | 0.2753 | 0.2079 | 0.2790 | 0.2385 |
64
+ | 1.0135 | 5.0891 | 8000 | 0.9857 | 0.3270 | 0.4992 | 0.4961 | 0.6108 | 0.4085 | 0.3399 | 0.6378 | 0.3508 | 0.3116 | 0.3093 | 0.3363 |
65
+ | 0.8651 | 7.6336 | 12000 | 0.8655 | 0.3997 | 0.5634 | 0.5652 | 0.4675 | 0.8101 | 0.4588 | 0.5172 | 0.4234 | 0.3705 | 0.3925 | 0.4123 |
66
+ | 0.7904 | 10.1781 | 16000 | 0.7801 | 0.4485 | 0.6141 | 0.6147 | 0.5644 | 0.4939 | 0.8116 | 0.5863 | 0.4541 | 0.4593 | 0.4161 | 0.4645 |
67
+ | 0.9002 | 12.7226 | 20000 | 0.7177 | 0.4769 | 0.6460 | 0.6457 | 0.6775 | 0.6256 | 0.6334 | 0.6475 | 0.4691 | 0.4874 | 0.4857 | 0.4657 |
68
+ | 0.6111 | 15.2672 | 24000 | 0.6339 | 0.5288 | 0.6790 | 0.6814 | 0.6149 | 0.9232 | 0.6051 | 0.5727 | 0.5528 | 0.4628 | 0.5587 | 0.5409 |
69
+ | 0.5422 | 17.8117 | 28000 | 0.5576 | 0.5788 | 0.7312 | 0.7300 | 0.6673 | 0.7190 | 0.6918 | 0.8469 | 0.6206 | 0.5811 | 0.5793 | 0.5340 |
70
+ | 0.5594 | 20.3562 | 32000 | 0.5073 | 0.6016 | 0.7470 | 0.7482 | 0.7632 | 0.7259 | 0.8431 | 0.6558 | 0.5749 | 0.6233 | 0.5720 | 0.6361 |
71
+ | 0.6542 | 22.9008 | 36000 | 0.4921 | 0.6137 | 0.7580 | 0.7590 | 0.7073 | 0.8514 | 0.7415 | 0.7320 | 0.6381 | 0.5894 | 0.6460 | 0.5813 |
72
+ | 0.4827 | 25.4453 | 40000 | 0.4701 | 0.6321 | 0.7736 | 0.7730 | 0.7499 | 0.7378 | 0.7800 | 0.8268 | 0.6531 | 0.6572 | 0.6355 | 0.5827 |
73
+ | 0.3901 | 27.9898 | 44000 | 0.4068 | 0.6747 | 0.8050 | 0.8052 | 0.8030 | 0.7737 | 0.8480 | 0.7955 | 0.6972 | 0.6956 | 0.6582 | 0.6477 |
74
+ | 0.4725 | 30.5344 | 48000 | 0.3738 | 0.6928 | 0.8180 | 0.8180 | 0.8152 | 0.7977 | 0.8433 | 0.8158 | 0.7242 | 0.7024 | 0.6954 | 0.6492 |
75
+ | 0.3067 | 33.0789 | 52000 | 0.3493 | 0.7223 | 0.8367 | 0.8374 | 0.8139 | 0.8374 | 0.8924 | 0.8029 | 0.7510 | 0.7253 | 0.6839 | 0.7290 |
76
+ | 0.4898 | 35.6234 | 56000 | 0.3349 | 0.7197 | 0.8369 | 0.8368 | 0.8726 | 0.8097 | 0.8431 | 0.8221 | 0.7006 | 0.7348 | 0.7254 | 0.7179 |
77
+ | 0.2826 | 38.1679 | 60000 | 0.3021 | 0.7503 | 0.8563 | 0.8569 | 0.8839 | 0.8769 | 0.8603 | 0.8041 | 0.7457 | 0.7359 | 0.7530 | 0.7668 |
78
+ | 0.3235 | 40.7125 | 64000 | 0.2863 | 0.7561 | 0.8612 | 0.8610 | 0.8758 | 0.8490 | 0.8598 | 0.8601 | 0.7478 | 0.7821 | 0.7630 | 0.7316 |
79
+ | 0.3374 | 43.2570 | 68000 | 0.2927 | 0.7689 | 0.8668 | 0.8674 | 0.8621 | 0.8328 | 0.9457 | 0.8266 | 0.7827 | 0.8025 | 0.7194 | 0.7708 |
80
+ | 0.2588 | 45.8015 | 72000 | 0.2737 | 0.7743 | 0.8716 | 0.8717 | 0.9129 | 0.8702 | 0.8653 | 0.8380 | 0.7254 | 0.7849 | 0.8016 | 0.7852 |
81
+ | 0.5224 | 48.3461 | 76000 | 0.2579 | 0.7905 | 0.8819 | 0.8822 | 0.9212 | 0.8628 | 0.9067 | 0.8367 | 0.7605 | 0.8124 | 0.7815 | 0.8075 |
82
+ | 0.2171 | 50.8906 | 80000 | 0.2373 | 0.7971 | 0.8867 | 0.8870 | 0.9187 | 0.8895 | 0.8875 | 0.8512 | 0.7941 | 0.7931 | 0.7986 | 0.8025 |
83
+ | 0.2075 | 53.4351 | 84000 | 0.2374 | 0.8051 | 0.8912 | 0.8916 | 0.9032 | 0.9120 | 0.8891 | 0.8608 | 0.8289 | 0.7819 | 0.8033 | 0.8064 |
84
+ | 0.3577 | 55.9796 | 88000 | 0.2390 | 0.8081 | 0.8931 | 0.8935 | 0.9098 | 0.9007 | 0.9072 | 0.8545 | 0.8076 | 0.7889 | 0.8134 | 0.8224 |
85
+ | 0.2084 | 58.5242 | 92000 | 0.2286 | 0.8128 | 0.8969 | 0.8968 | 0.9119 | 0.8833 | 0.8951 | 0.8974 | 0.8200 | 0.8185 | 0.8144 | 0.7983 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.48.3
91
+ - Pytorch 2.1.0
92
+ - Datasets 3.2.0
93
+ - Tokenizers 0.21.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b2",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 768,
9
+ "depths": [
10
+ 3,
11
+ 4,
12
+ 6,
13
+ 3
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "0-0",
32
+ "1": "0-90",
33
+ "2": "90-0",
34
+ "3": "90-90"
35
+ },
36
+ "image_size": 224,
37
+ "initializer_range": 0.02,
38
+ "label2id": {
39
+ "0-0": 0,
40
+ "0-90": 1,
41
+ "90-0": 2,
42
+ "90-90": 3
43
+ },
44
+ "layer_norm_eps": 1e-06,
45
+ "mlp_ratios": [
46
+ 4,
47
+ 4,
48
+ 4,
49
+ 4
50
+ ],
51
+ "model_type": "segformer",
52
+ "num_attention_heads": [
53
+ 1,
54
+ 2,
55
+ 5,
56
+ 8
57
+ ],
58
+ "num_channels": 3,
59
+ "num_encoder_blocks": 4,
60
+ "patch_sizes": [
61
+ 7,
62
+ 3,
63
+ 3,
64
+ 3
65
+ ],
66
+ "reshape_last_stage": true,
67
+ "semantic_loss_ignore_index": 255,
68
+ "sr_ratios": [
69
+ 8,
70
+ 4,
71
+ 2,
72
+ 1
73
+ ],
74
+ "strides": [
75
+ 4,
76
+ 2,
77
+ 2,
78
+ 2
79
+ ],
80
+ "torch_dtype": "float32",
81
+ "transformers_version": "4.48.3"
82
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b64397289bc17483c769ceaf00998d9e238e683091fed7dbcfbb32ab66525a2
3
+ size 109450168
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24411a836223d859e5eef1d3f244d80368a3934e3df7e1450d60112276621708
3
+ size 5432