segformer-b0-finetuned-morphpadver1-hgo-coord-v2

This model is a fine-tuned version of NICOPOI-9/segformer-b0-finetuned-morphpadver1-hgo-coord-v1 on the NICOPOI-9/morphpad_coord_hgo_512_4class dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0408
  • Mean Iou: 0.9952
  • Mean Accuracy: 0.9976
  • Overall Accuracy: 0.9976
  • Accuracy 0-0: 0.9993
  • Accuracy 0-90: 0.9958
  • Accuracy 90-0: 0.9969
  • Accuracy 90-90: 0.9983
  • Iou 0-0: 0.9975
  • Iou 0-90: 0.9929
  • Iou 90-0: 0.9949
  • Iou 90-90: 0.9955

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy 0-0 Accuracy 0-90 Accuracy 90-0 Accuracy 90-90 Iou 0-0 Iou 0-90 Iou 90-0 Iou 90-90
0.0654 2.5445 4000 0.1134 0.9236 0.9604 0.9602 0.9729 0.9373 0.9642 0.9674 0.9265 0.9144 0.9233 0.9301
0.0552 5.0891 8000 0.1426 0.9161 0.9562 0.9561 0.9607 0.9538 0.9547 0.9555 0.9166 0.9146 0.9112 0.9218
0.0469 7.6336 12000 0.0633 0.9556 0.9774 0.9773 0.9811 0.9714 0.9744 0.9826 0.9588 0.9516 0.9545 0.9576
0.0378 10.1781 16000 0.0506 0.9650 0.9822 0.9822 0.9826 0.9773 0.9844 0.9844 0.9661 0.9601 0.9643 0.9696
0.0582 12.7226 20000 0.0402 0.9737 0.9867 0.9866 0.9925 0.9891 0.9791 0.9860 0.9774 0.9700 0.9699 0.9774
0.0322 15.2672 24000 0.0453 0.9707 0.9850 0.9851 0.9809 0.9843 0.9909 0.9840 0.9746 0.9715 0.9637 0.9728
0.0254 17.8117 28000 0.1030 0.9652 0.9823 0.9822 0.9895 0.9808 0.9748 0.9841 0.9761 0.9599 0.9583 0.9666
2.3028 20.3562 32000 0.0572 0.9745 0.9871 0.9870 0.9861 0.9839 0.9885 0.9896 0.9789 0.9717 0.9700 0.9773
0.0769 22.9008 36000 0.0225 0.9866 0.9932 0.9932 0.9960 0.9899 0.9939 0.9932 0.9893 0.9837 0.9849 0.9884
0.0512 25.4453 40000 0.0329 0.9850 0.9924 0.9924 0.9959 0.9867 0.9954 0.9917 0.9857 0.9820 0.9843 0.9878
0.3281 27.9898 44000 0.0301 0.9866 0.9933 0.9932 0.9958 0.9913 0.9907 0.9952 0.9899 0.9858 0.9843 0.9863
0.1536 30.5344 48000 0.0355 0.9889 0.9944 0.9944 0.9981 0.9927 0.9920 0.9949 0.9941 0.9855 0.9880 0.9880
0.0079 33.0789 52000 0.0256 0.9933 0.9966 0.9966 0.9979 0.9951 0.9961 0.9974 0.9956 0.9917 0.9934 0.9924
0.0074 35.6234 56000 0.0205 0.9938 0.9969 0.9969 0.9983 0.9970 0.9966 0.9956 0.9963 0.9923 0.9928 0.9939
0.0077 38.1679 60000 0.0255 0.9933 0.9967 0.9966 0.9985 0.9946 0.9964 0.9971 0.9954 0.9925 0.9919 0.9934
0.0061 40.7125 64000 0.0282 0.9945 0.9972 0.9972 0.9987 0.9958 0.9974 0.9969 0.9967 0.9916 0.9950 0.9945
0.0051 43.2570 68000 0.0262 0.9937 0.9969 0.9968 0.9987 0.9949 0.9959 0.9979 0.9968 0.9916 0.9934 0.9930
0.0047 45.8015 72000 0.0564 0.9912 0.9956 0.9956 0.9991 0.9950 0.9940 0.9943 0.9958 0.9882 0.9897 0.9912
0.0046 48.3461 76000 0.0492 0.9939 0.9969 0.9969 0.9992 0.9941 0.9974 0.9970 0.9969 0.9903 0.9938 0.9945
0.0552 50.8906 80000 0.0438 0.9948 0.9974 0.9974 0.9992 0.9966 0.9967 0.9972 0.9980 0.9924 0.9948 0.9941
0.0039 53.4351 84000 0.0361 0.9953 0.9976 0.9976 0.9991 0.9961 0.9973 0.9981 0.9975 0.9928 0.9952 0.9956
0.0034 55.9796 88000 0.0317 0.9958 0.9979 0.9979 0.9993 0.9964 0.9974 0.9985 0.9979 0.9937 0.9955 0.9963
0.0149 58.5242 92000 0.0408 0.9952 0.9976 0.9976 0.9993 0.9958 0.9969 0.9983 0.9975 0.9929 0.9949 0.9955

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.1.0
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
25
Safetensors
Model size
13.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for NICOPOI-9/segformer-b0-finetuned-morphpadver1-hgo-coord-v2