segformer-b0-finetuned-morphpadver1-hgo-coord-v3

This model is a fine-tuned version of nvidia/mit-b3 on the NICOPOI-9/morphpad_coord_hgo_512_4class dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0298
  • Mean Iou: 0.9952
  • Mean Accuracy: 0.9976
  • Overall Accuracy: 0.9976
  • Accuracy 0-0: 0.9983
  • Accuracy 0-90: 0.9969
  • Accuracy 90-0: 0.9980
  • Accuracy 90-90: 0.9971
  • Iou 0-0: 0.9959
  • Iou 0-90: 0.9950
  • Iou 90-0: 0.9945
  • Iou 90-90: 0.9954

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy 0-0 Accuracy 0-90 Accuracy 90-0 Accuracy 90-90 Iou 0-0 Iou 0-90 Iou 90-0 Iou 90-90
0.9708 2.6525 4000 0.9827 0.3521 0.5133 0.5141 0.6031 0.4019 0.6068 0.4413 0.4004 0.3106 0.2982 0.3990
1.8598 5.3050 8000 0.6389 0.5316 0.6914 0.6913 0.6875 0.7105 0.5770 0.7908 0.6004 0.4655 0.5143 0.5463
0.4633 7.9576 12000 0.5041 0.6369 0.7767 0.7768 0.7883 0.7582 0.7869 0.7735 0.6734 0.6126 0.5897 0.6720
0.5576 10.6101 16000 0.4221 0.6949 0.8191 0.8194 0.8477 0.7814 0.8269 0.8206 0.7084 0.7075 0.6533 0.7106
0.3003 13.2626 20000 0.3963 0.7293 0.8413 0.8414 0.8524 0.8809 0.8047 0.8273 0.7565 0.6617 0.7326 0.7666
0.3174 15.9151 24000 0.4310 0.7511 0.8573 0.8572 0.8538 0.8774 0.8402 0.8577 0.7779 0.7125 0.7412 0.7729
0.2307 18.5676 28000 0.3326 0.8024 0.8901 0.8902 0.9029 0.8852 0.8832 0.8893 0.8196 0.7874 0.7805 0.8221
0.1946 21.2202 32000 0.2625 0.8409 0.9134 0.9134 0.9136 0.9197 0.8974 0.9230 0.8533 0.8114 0.8410 0.8581
0.1325 23.8727 36000 0.1298 0.9185 0.9575 0.9576 0.9647 0.9488 0.9691 0.9474 0.9319 0.9114 0.9158 0.9150
0.1007 26.5252 40000 0.0752 0.9596 0.9794 0.9794 0.9824 0.9811 0.9748 0.9792 0.9671 0.9557 0.9532 0.9624
0.0336 29.1777 44000 0.2640 0.9435 0.9709 0.9709 0.9750 0.9668 0.9713 0.9706 0.9473 0.9389 0.9382 0.9497
0.0182 31.8302 48000 0.1066 0.9680 0.9837 0.9837 0.9882 0.9801 0.9845 0.9821 0.9712 0.9677 0.9627 0.9703
0.0141 34.4828 52000 0.0716 0.9806 0.9902 0.9902 0.9880 0.9898 0.9893 0.9937 0.9822 0.9789 0.9792 0.9821
0.0117 37.1353 56000 0.0705 0.9850 0.9925 0.9925 0.9914 0.9920 0.9929 0.9935 0.9861 0.9838 0.9842 0.9859
0.0129 39.7878 60000 0.0932 0.9833 0.9916 0.9916 0.9897 0.9930 0.9920 0.9916 0.9834 0.9823 0.9827 0.9846
0.0101 42.4403 64000 0.0302 0.9924 0.9962 0.9962 0.9964 0.9966 0.9972 0.9946 0.9938 0.9917 0.9921 0.9921
0.0071 45.0928 68000 0.0294 0.9933 0.9966 0.9966 0.9971 0.9961 0.9958 0.9976 0.9946 0.9931 0.9925 0.9930
0.0066 47.7454 72000 0.0637 0.9912 0.9956 0.9956 0.9959 0.9957 0.9962 0.9946 0.9927 0.9917 0.9895 0.9910
0.0083 50.3979 76000 0.0494 0.9901 0.9950 0.9950 0.9956 0.9951 0.9946 0.9948 0.9901 0.9899 0.9887 0.9917
0.0049 53.0504 80000 0.0286 0.9944 0.9972 0.9972 0.9982 0.9967 0.9976 0.9963 0.9956 0.9935 0.9939 0.9946
0.0104 55.7029 84000 0.0244 0.9953 0.9976 0.9976 0.9984 0.9971 0.9978 0.9971 0.9957 0.9953 0.9942 0.9959
0.0046 58.3554 88000 0.0298 0.9952 0.9976 0.9976 0.9983 0.9969 0.9980 0.9971 0.9959 0.9950 0.9945 0.9954

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.1.0
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
25
Safetensors
Model size
47.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for NICOPOI-9/segformer-b0-finetuned-morphpadver1-hgo-coord-v3

Base model

nvidia/mit-b3
Finetuned
(15)
this model