Natet's picture
Training_2
5fbb182
|
raw
history blame
2.25 kB
metadata
license: apache-2.0
base_model: IlyaGusev/rut5_base_sum_gazeta
tags:
  - summarization_4
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: rut5_base_sum_gazeta-finetuned_week_gpt
    results: []

rut5_base_sum_gazeta-finetuned_week_gpt

This model is a fine-tuned version of IlyaGusev/rut5_base_sum_gazeta on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2643
  • Rouge1: 38.9793
  • Rouge2: 18.084
  • Rougel: 38.2265
  • Rougelsum: 38.1398

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
1.7691 1.0 1110 1.4005 37.7751 17.8163 36.9543 36.8721
1.4892 2.0 2220 1.3477 35.9415 16.8669 35.2207 35.1427
1.3579 3.0 3330 1.3079 37.7434 17.6683 36.8899 36.8441
1.2708 4.0 4440 1.2675 37.8746 17.4209 37.0707 37.0002
1.2006 5.0 5550 1.2703 38.8365 18.0032 38.0346 37.9948
1.1519 6.0 6660 1.2703 38.0897 17.5713 37.2911 37.179
1.1132 7.0 7770 1.2593 38.4929 17.8838 37.6146 37.5334
1.0932 8.0 8880 1.2643 38.9793 18.084 38.2265 38.1398

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3