NiloofarMomeni's picture
Model save
7ac6ee2 verified
metadata
library_name: transformers
license: apache-2.0
base_model: NiloofarMomeni/distilhubert-finetuned-breathiness
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-breathiness-finetuned-breathiness_fewshot
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8282828282828283

distilhubert-finetuned-breathiness-finetuned-breathiness_fewshot

This model is a fine-tuned version of NiloofarMomeni/distilhubert-finetuned-breathiness on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7120
  • Accuracy: 0.8283

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2935 1.0 47 0.5536 0.7980
0.4634 2.0 94 0.4524 0.7980
0.4697 3.0 141 0.4134 0.8081
0.371 4.0 188 0.4501 0.8182
0.4197 5.0 235 0.5902 0.8081
0.1565 6.0 282 0.6938 0.8081
0.1828 7.0 329 0.6856 0.8283
0.5466 8.0 376 0.8179 0.8182
0.3124 9.0 423 0.6968 0.8283
0.2355 10.0 470 0.7120 0.8283

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.0