NiloofarMomeni's picture
Model save
bf0e7b9 verified
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-grade_no_blc
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6702127659574468

distilhubert-finetuned-grade_no_blc

This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0439
  • Accuracy: 0.6702

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5828 1.0 117 0.6066 0.5957
0.4849 2.0 234 0.6302 0.6489
0.4787 3.0 351 0.6495 0.7021
0.8155 4.0 468 0.7747 0.6596
0.6115 5.0 585 0.7488 0.6383
0.5887 6.0 702 0.8279 0.6702
0.3955 7.0 819 0.9350 0.6277
0.2676 8.0 936 0.8922 0.6702
0.4663 9.0 1053 0.9672 0.6596
0.1649 10.0 1170 1.0439 0.6702

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.0