See axolotl config
axolotl version: 0.5.2
adapter: lora
auto_find_batch_size: true
base_model: Qwen/Qwen2.5-7B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e67a3bba658eaa0f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e67a3bba658eaa0f_train_data.json
type:
field_input: input
field_instruction: system_prompt
field_output: reference_answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: /workspace/axolotl/configs/deepspeed_stage2.json
early_stopping_patience: 5
eval_max_new_tokens: 128
eval_sample_packing: false
eval_steps: 50
eval_table_size: null
evaluation_strategy: steps
flash_attention: true
fp16: false
gpu_memory_limit: 80GiB
gradient_accumulation_steps: 2
gradient_checkpointing: true
greater_is_better: false
group_by_length: true
hub_model_id: PhoenixB/c6460c46-b09a-40f9-8e48-e0bc0d299c2e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2e-4
liger_fused_linear_cross_entropy: true
liger_glu_activation: true
liger_layer_norm: true
liger_rms_norm: true
liger_rope: true
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10000
metric_for_best_model: eval_loss
micro_batch_size: 2
mlflow_experiment_name: /tmp/e67a3bba658eaa0f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
save_total_limit: 1
sequence_len: 8196
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c4b7f349-24bc-4e90-8602-b3a61dc8b8ab
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c4b7f349-24bc-4e90-8602-b3a61dc8b8ab
warmup_steps: 20
weight_decay: 0.0
c6460c46-b09a-40f9-8e48-e0bc0d299c2e
This model is a fine-tuned version of Qwen/Qwen2.5-7B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0151
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 1.3133 |
1.3321 | 0.0056 | 50 | 1.1406 |
1.095 | 0.0111 | 100 | 0.9931 |
0.7319 | 0.0167 | 150 | 0.8583 |
0.4488 | 0.0223 | 200 | 0.7062 |
0.5606 | 0.0279 | 250 | 0.6025 |
0.369 | 0.0334 | 300 | 0.4909 |
0.3071 | 0.0390 | 350 | 0.4296 |
0.1691 | 0.0446 | 400 | 0.3548 |
0.1887 | 0.0502 | 450 | 0.2855 |
0.2134 | 0.0557 | 500 | 0.2420 |
0.0553 | 0.0613 | 550 | 0.2010 |
0.105 | 0.0669 | 600 | 0.1763 |
0.0427 | 0.0724 | 650 | 0.1375 |
0.0575 | 0.0780 | 700 | 0.1137 |
0.1403 | 0.0836 | 750 | 0.0975 |
0.0601 | 0.0892 | 800 | 0.0804 |
0.0619 | 0.0947 | 850 | 0.0610 |
0.0524 | 0.1003 | 900 | 0.0500 |
0.1153 | 0.1059 | 950 | 0.0399 |
0.0138 | 0.1115 | 1000 | 0.0333 |
0.0136 | 0.1170 | 1050 | 0.0298 |
0.01 | 0.1226 | 1100 | 0.0271 |
0.0228 | 0.1282 | 1150 | 0.0201 |
0.0364 | 0.1337 | 1200 | 0.0175 |
0.0149 | 0.1393 | 1250 | 0.0167 |
0.0368 | 0.1449 | 1300 | 0.0184 |
0.0135 | 0.1505 | 1350 | 0.0151 |
0.0064 | 0.1560 | 1400 | 0.0133 |
0.0332 | 0.1616 | 1450 | 0.0144 |
0.009 | 0.1672 | 1500 | 0.0145 |
0.0073 | 0.1728 | 1550 | 0.0137 |
0.0122 | 0.1783 | 1600 | 0.0148 |
0.0057 | 0.1839 | 1650 | 0.0151 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for PhoenixB/c6460c46-b09a-40f9-8e48-e0bc0d299c2e
Base model
Qwen/Qwen2.5-7B