QuantFactory/Llama-3-8B-TKK-Elite-V1.0-GGUF
This is quantized version of tarikkaankoc7/Llama-3-8B-TKK-Elite-V1.0 created using llama.cpp
Model Description
Llama-3-TKK-8B-Elite-V1.0
Llama-3-TKK-8B-Elite-V1.0, a generative model built upon the LLaMA 8B architecture, represents my individual undergraduate graduation project. Developed during my studies in Software Engineering at Malatya Turgut รzal University, this project stands as a culmination of my academic endeavors. I extend my sincere appreciation to Assoc. Prof. Dr. Harun Bingรถl, who served as both my department chair and thesis advisor. His invaluable guidance, unwavering support, and mentorship have significantly shaped my educational and research experiences. I am deeply grateful for his continuous encouragement, insightful feedback, and unwavering dedication. Thank you, Dr. Bingรถl...
Model Details
Training took 133 hours and 59 minutes for a total of 37,420 steps and was conducted on 8 Tesla V100 GPUs.
- Base Model: LLaMA 8B based LLM
- Model Developers: Tarฤฑk Kaan Koรง
- Thesis Advisor: Assoc. Prof. Dr. Harun Bingรถl
- Input: Text only
- Output: Text only
- Training Dataset: Cleaned Turkish raw data with 1 million raw instruction Turkish data, private
- Training Method: Fine-tuning with LORA
LORA Fine-Tuning Configuration
- lora_alpha: 16
- lora_dropout: 0.1
- r: 64
- bias: none
- task_type: CAUSAL_LM
Example Usage:
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, pipeline
import torch
model_id = "tarikkaankoc7/TKK-LLaMA3-8B-Elite-V1.0"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True
)
streamer = TextStreamer(tokenizer)
text_generation_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
streamer=streamer
)
messages = [
{"role": "system", "content": "Sen yardฤฑmsever bir yapay zeka asistanฤฑsฤฑn ve kullanฤฑcฤฑlarฤฑn verdiฤi talimatlara doฤrultusunda en iyi cevabฤฑ รผretmeye รงalฤฑลฤฑyorsun."},
{"role": "user", "content": "Leonardo da Vinci'nin en รผnlรผ tablosu hangisidir?"}
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
tokenizer.eos_token_id
]
outputs = text_generation_pipeline(
prompt,
max_new_tokens=2048,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.95
)
print(outputs[0]["generated_text"])
Output:
Leonardo da Vinci'nin en รผnlรผ tablosu Mona Lisa'dฤฑr.
- Downloads last month
- 41
3-bit
4-bit
5-bit
6-bit
8-bit
16-bit
32-bit
Model tree for QuantFactory/Llama-3-8B-TKK-Elite-V1.0-GGUF
Base model
tarikkaankoc7/Llama-3-8B-TKK-Elite-V1.0