Inference Instructions:

!pip install unsloth
from unsloth import FastLanguageModel
from transformers import TextStreamer
import torch

# Load your fine-tuned model
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="QuantumInk/Mistral-small-12B-Hinglish-cot",
    max_seq_length=2048,
    load_in_4bit=True
)
FastLanguageModel.for_inference(model)

# Streamer for real-time decoding
text_streamer = TextStreamer(tokenizer)

# Alpaca prompt template
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input_text}
### Response:
{output}"""
# Chat loop with memory
def chat():
    print("💬 Chat with Qwen-2.5-Hindi-Hinglish-COT! Type '\\q' or 'quit' to exit.\n")

    chat_history = ""  # Full chat history with prompts and responses

    while True:
        user_input = input("➤ ")

        if user_input.lower() in ["\\q", "quit"]:
            print("\n👋 Exiting chat. Goodbye!")
            break

        # Format the current prompt
        current_prompt = alpaca_prompt.format(
            instruction="Continue the following conversation.",
            input_text=user_input,
            output=""
        )

        # Add to full chat history
        chat_history += current_prompt + "\n"

        # Tokenize the full prompt
        inputs = tokenizer([chat_history], return_tensors="pt").to("cuda")

        print("\n🤖: ", end="")  # Prepare for streaming output

        # Generate response using streamer
        outputs = model.generate(
            **inputs,
            max_new_tokens=256,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            no_repeat_ngram_size=2,
            streamer=text_streamer
        )

        # Decode and capture response for chat history
        full_output = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
        response = full_output.split("### Response:")[-1].strip()

        # Add response to chat history
        chat_history += f"{response}\n"

# Run the chat
chat()
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for QuantumInk/Mistral-small-12B-Hinglish-cot

Dataset used to train QuantumInk/Mistral-small-12B-Hinglish-cot

Collection including QuantumInk/Mistral-small-12B-Hinglish-cot