zhilinw6's picture
Update Model Name
04a2137 verified
metadata
model-index:
  - name: Quark-Emb-1.5b
    results:
      - dataset:
          config: default
          name: MTEB AFQMC
          revision: None
          split: validation
          type: C-MTEB/AFQMC
        metrics:
          - type: cosine_pearson
            value: 47.14285927987258
          - type: cosine_spearman
            value: 48.161200368263025
          - type: manhattan_pearson
            value: 46.852921578928694
          - type: manhattan_spearman
            value: 48.0768829644805
          - type: euclidean_pearson
            value: 46.934710408297846
          - type: euclidean_spearman
            value: 48.161200368263025
          - type: main_score
            value: 48.161200368263025
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB ATEC
          revision: None
          split: test
          type: C-MTEB/ATEC
        metrics:
          - type: cosine_pearson
            value: 53.31694395347832
          - type: cosine_spearman
            value: 50.82142054857025
          - type: manhattan_pearson
            value: 55.63018022546727
          - type: manhattan_spearman
            value: 50.808925663235286
          - type: euclidean_pearson
            value: 55.630897902214585
          - type: euclidean_spearman
            value: 50.82142054857025
          - type: main_score
            value: 50.82142054857025
        task:
          type: STS
      - dataset:
          config: zh
          name: MTEB AmazonReviewsClassification (zh)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 51.93800000000001
          - type: accuracy_stderr
            value: 1.6225030046197138
          - type: f1
            value: 49.36480272612989
          - type: f1_stderr
            value: 2.402473535325102
          - type: main_score
            value: 51.93800000000001
        task:
          type: Classification
      - dataset:
          config: zh
          name: MTEB AmazonReviewsClassification (zh)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: validation
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 50.757999999999996
          - type: accuracy_stderr
            value: 1.1949041802588176
          - type: f1
            value: 48.18542841607346
          - type: f1_stderr
            value: 2.025507464835368
          - type: main_score
            value: 50.757999999999996
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB BQ
          revision: None
          split: test
          type: C-MTEB/BQ
        metrics:
          - type: cosine_pearson
            value: 66.94471481392273
          - type: cosine_spearman
            value: 67.86811107045457
          - type: manhattan_pearson
            value: 65.56778188873142
          - type: manhattan_spearman
            value: 67.83060870618156
          - type: euclidean_pearson
            value: 65.63668085779311
          - type: euclidean_spearman
            value: 67.86811107045457
          - type: main_score
            value: 67.86811107045457
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB CLSClusteringP2P
          revision: None
          split: test
          type: C-MTEB/CLSClusteringP2P
        metrics:
          - type: v_measure
            value: 58.53706905558472
          - type: v_measure_std
            value: 1.3628784531981595
          - type: main_score
            value: 58.53706905558472
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CLSClusteringS2S
          revision: None
          split: test
          type: C-MTEB/CLSClusteringS2S
        metrics:
          - type: v_measure
            value: 54.70969139354621
          - type: v_measure_std
            value: 1.938384688132648
          - type: main_score
            value: 54.70969139354621
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CMedQAv1
          revision: None
          split: test
          type: C-MTEB/CMedQAv1-reranking
        metrics:
          - type: map
            value: 87.79521046311835
          - type: mrr
            value: 90.01547619047618
          - type: main_score
            value: 87.79521046311835
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB CMedQAv2
          revision: None
          split: test
          type: C-MTEB/CMedQAv2-reranking
        metrics:
          - type: map
            value: 87.89916670870878
          - type: mrr
            value: 89.92595238095238
          - type: main_score
            value: 87.89916670870878
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB CmedqaRetrieval
          revision: None
          split: dev
          type: C-MTEB/CmedqaRetrieval
        metrics:
          - type: map_at_1
            value: 25.444
          - type: map_at_10
            value: 37.763999999999996
          - type: map_at_100
            value: 39.641999999999996
          - type: map_at_1000
            value: 39.756
          - type: map_at_3
            value: 33.742
          - type: map_at_5
            value: 35.906
          - type: mrr_at_1
            value: 38.71
          - type: mrr_at_10
            value: 46.744
          - type: mrr_at_100
            value: 47.745
          - type: mrr_at_1000
            value: 47.791
          - type: mrr_at_3
            value: 44.324000000000005
          - type: mrr_at_5
            value: 45.696
          - type: ndcg_at_1
            value: 38.71
          - type: ndcg_at_10
            value: 44.285000000000004
          - type: ndcg_at_100
            value: 51.69200000000001
          - type: ndcg_at_1000
            value: 53.669999999999995
          - type: ndcg_at_3
            value: 39.273
          - type: ndcg_at_5
            value: 41.254000000000005
          - type: precision_at_1
            value: 38.71
          - type: precision_at_10
            value: 9.825000000000001
          - type: precision_at_100
            value: 1.583
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 22.197
          - type: precision_at_5
            value: 16.019
          - type: recall_at_1
            value: 25.444
          - type: recall_at_10
            value: 54.535999999999994
          - type: recall_at_100
            value: 85.307
          - type: recall_at_1000
            value: 98.473
          - type: recall_at_3
            value: 39.274
          - type: recall_at_5
            value: 45.580999999999996
          - type: main_score
            value: 44.285000000000004
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB Cmnli
          revision: None
          split: validation
          type: C-MTEB/CMNLI
        metrics:
          - type: cos_sim_accuracy
            value: 89.58508719182201
          - type: cos_sim_accuracy_threshold
            value: 97.09511288861569
          - type: cos_sim_ap
            value: 95.12338246323735
          - type: cos_sim_f1
            value: 90.19211324570271
          - type: cos_sim_f1_threshold
            value: 97.02014138938755
          - type: cos_sim_precision
            value: 86.80795847750865
          - type: cos_sim_recall
            value: 93.85083002104278
          - type: dot_accuracy
            value: 89.58508719182201
          - type: dot_accuracy_threshold
            value: 97.0951128886157
          - type: dot_ap
            value: 95.13959275940286
          - type: dot_f1
            value: 90.19211324570271
          - type: dot_f1_threshold
            value: 97.02014138938755
          - type: dot_precision
            value: 86.80795847750865
          - type: dot_recall
            value: 93.85083002104278
          - type: euclidean_accuracy
            value: 89.58508719182201
          - type: euclidean_accuracy_threshold
            value: 24.103473235790947
          - type: euclidean_ap
            value: 95.12338246323735
          - type: euclidean_f1
            value: 90.19211324570271
          - type: euclidean_f1_threshold
            value: 24.412531977088996
          - type: euclidean_precision
            value: 86.80795847750865
          - type: euclidean_recall
            value: 93.85083002104278
          - type: manhattan_accuracy
            value: 89.57306073361396
          - type: manhattan_accuracy_threshold
            value: 729.1211254739587
          - type: manhattan_ap
            value: 95.12388319543341
          - type: manhattan_f1
            value: 90.13956654941563
          - type: manhattan_f1_threshold
            value: 733.155723492131
          - type: manhattan_precision
            value: 87.56613756613757
          - type: manhattan_recall
            value: 92.8688332943652
          - type: max_accuracy
            value: 89.58508719182201
          - type: max_ap
            value: 95.13959275940286
          - type: max_f1
            value: 90.19211324570271
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB CovidRetrieval
          revision: None
          split: dev
          type: C-MTEB/CovidRetrieval
        metrics:
          - type: map_at_1
            value: 75.29
          - type: map_at_10
            value: 82.392
          - type: map_at_100
            value: 82.581
          - type: map_at_1000
            value: 82.585
          - type: map_at_3
            value: 80.88300000000001
          - type: map_at_5
            value: 81.71199999999999
          - type: mrr_at_1
            value: 75.553
          - type: mrr_at_10
            value: 82.422
          - type: mrr_at_100
            value: 82.6
          - type: mrr_at_1000
            value: 82.604
          - type: mrr_at_3
            value: 80.927
          - type: mrr_at_5
            value: 81.765
          - type: ndcg_at_1
            value: 75.44800000000001
          - type: ndcg_at_10
            value: 85.655
          - type: ndcg_at_100
            value: 86.435
          - type: ndcg_at_1000
            value: 86.541
          - type: ndcg_at_3
            value: 82.60300000000001
          - type: ndcg_at_5
            value: 84.062
          - type: precision_at_1
            value: 75.44800000000001
          - type: precision_at_10
            value: 9.663
          - type: precision_at_100
            value: 1.002
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 29.329
          - type: precision_at_5
            value: 18.314
          - type: recall_at_1
            value: 75.29
          - type: recall_at_10
            value: 95.838
          - type: recall_at_100
            value: 99.157
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 87.566
          - type: recall_at_5
            value: 90.991
          - type: main_score
            value: 85.655
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB DuRetrieval
          revision: None
          split: dev
          type: C-MTEB/DuRetrieval
        metrics:
          - type: map_at_1
            value: 27.584999999999997
          - type: map_at_10
            value: 85.112
          - type: map_at_100
            value: 87.632
          - type: map_at_1000
            value: 87.654
          - type: map_at_3
            value: 59.504999999999995
          - type: map_at_5
            value: 75.029
          - type: mrr_at_1
            value: 93.30000000000001
          - type: mrr_at_10
            value: 95.44200000000001
          - type: mrr_at_100
            value: 95.498
          - type: mrr_at_1000
            value: 95.5
          - type: mrr_at_3
            value: 95.258
          - type: mrr_at_5
            value: 95.36099999999999
          - type: ndcg_at_1
            value: 93.30000000000001
          - type: ndcg_at_10
            value: 91.086
          - type: ndcg_at_100
            value: 93.089
          - type: ndcg_at_1000
            value: 93.297
          - type: ndcg_at_3
            value: 90.432
          - type: ndcg_at_5
            value: 89.361
          - type: precision_at_1
            value: 93.30000000000001
          - type: precision_at_10
            value: 43.21
          - type: precision_at_100
            value: 4.857
          - type: precision_at_1000
            value: 0.49
          - type: precision_at_3
            value: 81
          - type: precision_at_5
            value: 68.28999999999999
          - type: recall_at_1
            value: 27.584999999999997
          - type: recall_at_10
            value: 91.73599999999999
          - type: recall_at_100
            value: 98.648
          - type: recall_at_1000
            value: 99.751
          - type: recall_at_3
            value: 61.378
          - type: recall_at_5
            value: 78.672
          - type: main_score
            value: 91.086
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB EcomRetrieval
          revision: None
          split: dev
          type: C-MTEB/EcomRetrieval
        metrics:
          - type: map_at_1
            value: 55.1
          - type: map_at_10
            value: 65.268
          - type: map_at_100
            value: 65.756
          - type: map_at_1000
            value: 65.765
          - type: map_at_3
            value: 63.132999999999996
          - type: map_at_5
            value: 64.25800000000001
          - type: mrr_at_1
            value: 55.1
          - type: mrr_at_10
            value: 65.268
          - type: mrr_at_100
            value: 65.756
          - type: mrr_at_1000
            value: 65.765
          - type: mrr_at_3
            value: 63.132999999999996
          - type: mrr_at_5
            value: 64.25800000000001
          - type: ndcg_at_1
            value: 55.1
          - type: ndcg_at_10
            value: 70.15599999999999
          - type: ndcg_at_100
            value: 72.368
          - type: ndcg_at_1000
            value: 72.635
          - type: ndcg_at_3
            value: 65.697
          - type: ndcg_at_5
            value: 67.741
          - type: precision_at_1
            value: 55.1
          - type: precision_at_10
            value: 8.55
          - type: precision_at_100
            value: 0.955
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 24.367
          - type: precision_at_5
            value: 15.620000000000001
          - type: recall_at_1
            value: 55.1
          - type: recall_at_10
            value: 85.5
          - type: recall_at_100
            value: 95.5
          - type: recall_at_1000
            value: 97.6
          - type: recall_at_3
            value: 73.1
          - type: recall_at_5
            value: 78.10000000000001
          - type: main_score
            value: 70.15599999999999
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB IFlyTek
          revision: None
          split: validation
          type: C-MTEB/IFlyTek-classification
        metrics:
          - type: accuracy
            value: 52.743362831858406
          - type: accuracy_stderr
            value: 0.4449967616714387
          - type: f1
            value: 40.13427504900375
          - type: f1_stderr
            value: 0.17565290177989018
          - type: main_score
            value: 52.743362831858406
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB JDReview
          revision: None
          split: test
          type: C-MTEB/JDReview-classification
        metrics:
          - type: accuracy
            value: 90.13133208255161
          - type: accuracy_stderr
            value: 0.9647249630155678
          - type: ap
            value: 62.848199712439765
          - type: ap_stderr
            value: 1.986859492917626
          - type: f1
            value: 85.48543445690254
          - type: f1_stderr
            value: 1.0490059319804828
          - type: main_score
            value: 90.13133208255161
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB LCQMC
          revision: None
          split: test
          type: C-MTEB/LCQMC
        metrics:
          - type: cosine_pearson
            value: 77.75677384428634
          - type: cosine_spearman
            value: 78.86284859566986
          - type: manhattan_pearson
            value: 79.8032754323316
          - type: manhattan_spearman
            value: 78.85558562163624
          - type: euclidean_pearson
            value: 79.82552324704292
          - type: euclidean_spearman
            value: 78.86284859566986
          - type: main_score
            value: 78.86284859566986
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB MMarcoReranking
          revision: None
          split: dev
          type: C-MTEB/Mmarco-reranking
        metrics:
          - type: map
            value: 30.737025407798523
          - type: mrr
            value: 29.26111111111111
          - type: main_score
            value: 30.737025407798523
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB MMarcoRetrieval
          revision: None
          split: dev
          type: C-MTEB/MMarcoRetrieval
        metrics:
          - type: map_at_1
            value: 70.244
          - type: map_at_10
            value: 78.975
          - type: map_at_100
            value: 79.253
          - type: map_at_1000
            value: 79.26100000000001
          - type: map_at_3
            value: 77.363
          - type: map_at_5
            value: 78.364
          - type: mrr_at_1
            value: 72.521
          - type: mrr_at_10
            value: 79.514
          - type: mrr_at_100
            value: 79.75
          - type: mrr_at_1000
            value: 79.757
          - type: mrr_at_3
            value: 78.095
          - type: mrr_at_5
            value: 78.987
          - type: ndcg_at_1
            value: 72.521
          - type: ndcg_at_10
            value: 82.395
          - type: ndcg_at_100
            value: 83.554
          - type: ndcg_at_1000
            value: 83.774
          - type: ndcg_at_3
            value: 79.341
          - type: ndcg_at_5
            value: 81.036
          - type: precision_at_1
            value: 72.521
          - type: precision_at_10
            value: 9.812
          - type: precision_at_100
            value: 1.038
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 29.694
          - type: precision_at_5
            value: 18.712999999999997
          - type: recall_at_1
            value: 70.244
          - type: recall_at_10
            value: 92.35
          - type: recall_at_100
            value: 97.419
          - type: recall_at_1000
            value: 99.16199999999999
          - type: recall_at_3
            value: 84.303
          - type: recall_at_5
            value: 88.325
          - type: main_score
            value: 82.395
        task:
          type: Retrieval
      - dataset:
          config: zh-CN
          name: MTEB MassiveIntentClassification (zh-CN)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 76.3752521856086
          - type: accuracy_stderr
            value: 1.3911220977886072
          - type: f1
            value: 73.38330839246518
          - type: f1_stderr
            value: 0.9864886479418102
          - type: main_score
            value: 76.3752521856086
        task:
          type: Classification
      - dataset:
          config: zh-CN
          name: MTEB MassiveScenarioClassification (zh-CN)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 81.8022864828514
          - type: accuracy_stderr
            value: 1.4060452754762354
          - type: f1
            value: 80.85164585310973
          - type: f1_stderr
            value: 1.2664399398388577
          - type: main_score
            value: 81.8022864828514
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB MedicalRetrieval
          revision: None
          split: dev
          type: C-MTEB/MedicalRetrieval
        metrics:
          - type: map_at_1
            value: 57.199999999999996
          - type: map_at_10
            value: 63.346999999999994
          - type: map_at_100
            value: 63.852
          - type: map_at_1000
            value: 63.88700000000001
          - type: map_at_3
            value: 61.967000000000006
          - type: map_at_5
            value: 62.66199999999999
          - type: mrr_at_1
            value: 57.3
          - type: mrr_at_10
            value: 63.397000000000006
          - type: mrr_at_100
            value: 63.902
          - type: mrr_at_1000
            value: 63.937
          - type: mrr_at_3
            value: 62.017
          - type: mrr_at_5
            value: 62.712
          - type: ndcg_at_1
            value: 57.199999999999996
          - type: ndcg_at_10
            value: 66.38300000000001
          - type: ndcg_at_100
            value: 69.267
          - type: ndcg_at_1000
            value: 70.233
          - type: ndcg_at_3
            value: 63.44499999999999
          - type: ndcg_at_5
            value: 64.71000000000001
          - type: precision_at_1
            value: 57.199999999999996
          - type: precision_at_10
            value: 7.6
          - type: precision_at_100
            value: 0.905
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 22.567
          - type: precision_at_5
            value: 14.16
          - type: recall_at_1
            value: 57.199999999999996
          - type: recall_at_10
            value: 76
          - type: recall_at_100
            value: 90.5
          - type: recall_at_1000
            value: 98.2
          - type: recall_at_3
            value: 67.7
          - type: recall_at_5
            value: 70.8
          - type: main_score
            value: 66.38300000000001
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB MultilingualSentiment
          revision: None
          split: validation
          type: C-MTEB/MultilingualSentiment-classification
        metrics:
          - type: accuracy
            value: 80.12333333333335
          - type: accuracy_stderr
            value: 0.31377628265303376
          - type: f1
            value: 80.26166732998303
          - type: f1_stderr
            value: 0.2836457609943486
          - type: main_score
            value: 80.12333333333335
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB Ocnli
          revision: None
          split: validation
          type: C-MTEB/OCNLI
        metrics:
          - type: cos_sim_accuracy
            value: 87.54737412019492
          - type: cos_sim_accuracy_threshold
            value: 96.99121475650863
          - type: cos_sim_ap
            value: 91.71816430648396
          - type: cos_sim_f1
            value: 88.27655310621243
          - type: cos_sim_f1_threshold
            value: 96.8697507135398
          - type: cos_sim_precision
            value: 83.98474737845567
          - type: cos_sim_recall
            value: 93.03062302006336
          - type: dot_accuracy
            value: 87.54737412019492
          - type: dot_accuracy_threshold
            value: 96.99121475650863
          - type: dot_ap
            value: 91.71816430648396
          - type: dot_f1
            value: 88.27655310621243
          - type: dot_f1_threshold
            value: 96.86975071353979
          - type: dot_precision
            value: 83.98474737845567
          - type: dot_recall
            value: 93.03062302006336
          - type: euclidean_accuracy
            value: 87.54737412019492
          - type: euclidean_accuracy_threshold
            value: 24.530733065589622
          - type: euclidean_ap
            value: 91.71816430648396
          - type: euclidean_f1
            value: 88.27655310621243
          - type: euclidean_f1_threshold
            value: 25.020988098238107
          - type: euclidean_precision
            value: 83.98474737845567
          - type: euclidean_recall
            value: 93.03062302006336
          - type: manhattan_accuracy
            value: 87.27666486193829
          - type: manhattan_accuracy_threshold
            value: 752.4905438529156
          - type: manhattan_ap
            value: 91.70647280240597
          - type: manhattan_f1
            value: 88.08920425747591
          - type: manhattan_f1_threshold
            value: 752.4905438529156
          - type: manhattan_precision
            value: 84.69785575048732
          - type: manhattan_recall
            value: 91.76346356916578
          - type: max_accuracy
            value: 87.54737412019492
          - type: max_ap
            value: 91.71816430648396
          - type: max_f1
            value: 88.27655310621243
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB OnlineShopping
          revision: None
          split: test
          type: C-MTEB/OnlineShopping-classification
        metrics:
          - type: accuracy
            value: 94.46999999999998
          - type: accuracy_stderr
            value: 0.2865309756378883
          - type: ap
            value: 93.00417328431348
          - type: ap_stderr
            value: 0.5383352662551945
          - type: f1
            value: 94.4618263222835
          - type: f1_stderr
            value: 0.2840342094212124
          - type: main_score
            value: 94.46999999999998
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB PAWSX
          revision: None
          split: test
          type: C-MTEB/PAWSX
        metrics:
          - type: cosine_pearson
            value: 46.85211982536296
          - type: cosine_spearman
            value: 49.917839688145996
          - type: manhattan_pearson
            value: 49.66820248148123
          - type: manhattan_spearman
            value: 49.94013555794742
          - type: euclidean_pearson
            value: 49.63608491973345
          - type: euclidean_spearman
            value: 49.917839688145996
          - type: main_score
            value: 49.917839688145996
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB QBQTC
          revision: None
          split: test
          type: C-MTEB/QBQTC
        metrics:
          - type: cosine_pearson
            value: 55.18355221701257
          - type: cosine_spearman
            value: 54.67390932826382
          - type: manhattan_pearson
            value: 53.32847494683504
          - type: manhattan_spearman
            value: 54.61660160532041
          - type: euclidean_pearson
            value: 53.405599174765364
          - type: euclidean_spearman
            value: 54.67390932826382
          - type: main_score
            value: 54.67390932826382
        task:
          type: STS
      - dataset:
          config: zh
          name: MTEB STS22 (zh)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_pearson
            value: 67.89319522460808
          - type: cosine_spearman
            value: 68.98524514928238
          - type: manhattan_pearson
            value: 67.65257700660463
          - type: manhattan_spearman
            value: 69.17199742136434
          - type: euclidean_pearson
            value: 67.52535570217756
          - type: euclidean_spearman
            value: 68.98524514928238
          - type: main_score
            value: 68.98524514928238
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STSB
          revision: None
          split: test
          type: C-MTEB/STSB
        metrics:
          - type: cosine_pearson
            value: 75.4871803618505
          - type: cosine_spearman
            value: 76.17471665593993
          - type: manhattan_pearson
            value: 75.73597640243183
          - type: manhattan_spearman
            value: 76.20048941210949
          - type: euclidean_pearson
            value: 75.66172628182565
          - type: euclidean_spearman
            value: 76.17471665593993
          - type: main_score
            value: 76.17471665593993
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB T2Reranking
          revision: None
          split: dev
          type: C-MTEB/T2Reranking
        metrics:
          - type: map
            value: 67.45036855302303
          - type: mrr
            value: 78.15107441080697
          - type: main_score
            value: 67.45036855302303
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB T2Retrieval
          revision: None
          split: dev
          type: C-MTEB/T2Retrieval
        metrics:
          - type: map_at_1
            value: 28.094
          - type: map_at_10
            value: 79.367
          - type: map_at_100
            value: 82.89800000000001
          - type: map_at_1000
            value: 82.953
          - type: map_at_3
            value: 55.782
          - type: map_at_5
            value: 68.667
          - type: mrr_at_1
            value: 91.237
          - type: mrr_at_10
            value: 93.399
          - type: mrr_at_100
            value: 93.479
          - type: mrr_at_1000
            value: 93.482
          - type: mrr_at_3
            value: 93.029
          - type: mrr_at_5
            value: 93.273
          - type: ndcg_at_1
            value: 91.237
          - type: ndcg_at_10
            value: 86.368
          - type: ndcg_at_100
            value: 89.637
          - type: ndcg_at_1000
            value: 90.16300000000001
          - type: ndcg_at_3
            value: 87.691
          - type: ndcg_at_5
            value: 86.462
          - type: precision_at_1
            value: 91.237
          - type: precision_at_10
            value: 42.841
          - type: precision_at_100
            value: 5.047
          - type: precision_at_1000
            value: 0.517
          - type: precision_at_3
            value: 76.708
          - type: precision_at_5
            value: 64.428
          - type: recall_at_1
            value: 28.094
          - type: recall_at_10
            value: 85.181
          - type: recall_at_100
            value: 95.953
          - type: recall_at_1000
            value: 98.63
          - type: recall_at_3
            value: 57.267999999999994
          - type: recall_at_5
            value: 71.75399999999999
          - type: main_score
            value: 86.368
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB TNews
          revision: None
          split: validation
          type: C-MTEB/TNews-classification
        metrics:
          - type: accuracy
            value: 55.482
          - type: accuracy_stderr
            value: 0.3268577672321692
          - type: f1
            value: 53.57211848235611
          - type: f1_stderr
            value: 0.3511138517262321
          - type: main_score
            value: 55.482
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB ThuNewsClusteringP2P
          revision: None
          split: test
          type: C-MTEB/ThuNewsClusteringP2P
        metrics:
          - type: v_measure
            value: 79.44895384385426
          - type: v_measure_std
            value: 2.315777338929376
          - type: main_score
            value: 79.44895384385426
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB ThuNewsClusteringS2S
          revision: None
          split: test
          type: C-MTEB/ThuNewsClusteringS2S
        metrics:
          - type: v_measure
            value: 76.95904984506356
          - type: v_measure_std
            value: 2.244801218820472
          - type: main_score
            value: 76.95904984506356
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB VideoRetrieval
          revision: None
          split: dev
          type: C-MTEB/VideoRetrieval
        metrics:
          - type: map_at_1
            value: 65.60000000000001
          - type: map_at_10
            value: 75.24499999999999
          - type: map_at_100
            value: 75.51
          - type: map_at_1000
            value: 75.519
          - type: map_at_3
            value: 73.68299999999999
          - type: map_at_5
            value: 74.638
          - type: mrr_at_1
            value: 65.60000000000001
          - type: mrr_at_10
            value: 75.24499999999999
          - type: mrr_at_100
            value: 75.51
          - type: mrr_at_1000
            value: 75.519
          - type: mrr_at_3
            value: 73.68299999999999
          - type: mrr_at_5
            value: 74.638
          - type: ndcg_at_1
            value: 65.60000000000001
          - type: ndcg_at_10
            value: 79.338
          - type: ndcg_at_100
            value: 80.585
          - type: ndcg_at_1000
            value: 80.772
          - type: ndcg_at_3
            value: 76.189
          - type: ndcg_at_5
            value: 77.915
          - type: precision_at_1
            value: 65.60000000000001
          - type: precision_at_10
            value: 9.19
          - type: precision_at_100
            value: 0.976
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 27.800000000000004
          - type: precision_at_5
            value: 17.52
          - type: recall_at_1
            value: 65.60000000000001
          - type: recall_at_10
            value: 91.9
          - type: recall_at_100
            value: 97.6
          - type: recall_at_1000
            value: 99
          - type: recall_at_3
            value: 83.39999999999999
          - type: recall_at_5
            value: 87.6
          - type: main_score
            value: 79.338
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB Waimai
          revision: None
          split: test
          type: C-MTEB/waimai-classification
        metrics:
          - type: accuracy
            value: 89.9
          - type: accuracy_stderr
            value: 0.7861297602813425
          - type: ap
            value: 76.33068327298966
          - type: ap_stderr
            value: 1.6404446239337744
          - type: f1
            value: 88.66175970131309
          - type: f1_stderr
            value: 0.7269675835542363
          - type: main_score
            value: 89.9
        task:
          type: Classification
tags:
  - mteb

quark-llm-embedding-1.5B

  • Chinese Text Embedding Model developed by Alibaba Quark-LLM Team. Details will be published later.