YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

semcoder_1030 - bnb 8bits

Original model description:

license: other library_name: transformers license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL pipeline_tag: text-generation

🤔 SemCoder: Training Code Language Models with Comprehensive Semantics Reasoning

Refer to our GitHub repo ARiSE-Lab/SemCoder for detailed introduction to SemCoder!

Model Details

Use the code below to get started with the model. Make sure you installed the transformers library.

from transformers import pipeline
import torch

generator = pipeline(
  model="semcoder/semcoder_1030",
  task="text-generation",
  torch_dtype=torch.float16,
  device_map="auto",
)

# Generate Code

CODEGEN_REQUEST = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable <Code> according to <NL_Description>

<NL_Description>
{desc}

<Code>
"""
desc = """You are tasked with implementing a Python class that simulates a simple version of a "To-Do List" application. The class should have the following functionalities:
1. Add a new task to the to-do list.
2. Mark a task as completed.
3. Display all tasks in the to-do list.
4. Display only the incomplete tasks in the to-do list.
"""

prompt = CODEGEN_REQUEST.format(desc=desc)
result = generator(prompt, max_length=2048, num_return_sequences=1, temperature=0.0)
code = result[0]["generated_text"].split("```python")[1].split("```")[0]
print(code)

# Understand Code with Monologues

FWD_MNL_REQUEST = """Simulate the Execution: You are given a Python function and an assertion containing a function input. Complete the assertion containing the execution output corresponding to the given input in [ANSWER] and [/ANSWER] tags.
{code}
"""

tests = """
todo_list = ToDoList()
todo_list.add_task("Buy groceries")
todo_list.add_task("Complete assignment")
todo_list.mark_completed("Buy groceries")
assert todo_list.tasks == ???
"""
code += tests
prompt = FWD_MNL_REQUEST.format(code=code)
result = generator(prompt, max_length=2048, num_return_sequences=1, temperature=0.0)
print(result[0]["generated_text"])

Citation

@article{ding2024semcoder,
  title={SemCoder: Training Code Language Models with Comprehensive Semantics},
  author={Yangruibo Ding and Jinjun Peng and Marcus J. Min and Gail Kaiser and Junfeng Yang and Baishakhi Ray},
  journal={arXiv preprint arXiv:2406.01006},
  year={2024}
}

Important Note

SemCoder models are trained on the synthetic data generated by OpenAI models. Please pay attention to OpenAI's terms of use when using the models and the datasets. SemCoder will not compete with OpenAI's commercial products.

Downloads last month
0
Safetensors
Model size
6.74B params
Tensor type
F32
·
FP16
·
I8
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.