See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Yarn-Mistral-7b-128k
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 8c4ff8cee4cec4f4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/8c4ff8cee4cec4f4_train_data.json
type:
field_instruction: title
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/8ce2d2b2-df8e-49c2-991a-52d0e53001e8
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 714
micro_batch_size: 4
mlflow_experiment_name: /tmp/8c4ff8cee4cec4f4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
use_rslora: true
val_set_size: 0.021045896891941945
wandb_entity: null
wandb_mode: online
wandb_name: 15bd6132-1c7e-43e2-afd4-1aee8666ab1b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 15bd6132-1c7e-43e2-afd4-1aee8666ab1b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
8ce2d2b2-df8e-49c2-991a-52d0e53001e8
This model is a fine-tuned version of NousResearch/Yarn-Mistral-7b-128k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3366
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 714
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
12.4572 | 0.0001 | 1 | 1.5985 |
10.964 | 0.0138 | 100 | 1.3773 |
9.1479 | 0.0275 | 200 | 1.3809 |
10.1482 | 0.0413 | 300 | 1.3753 |
12.1973 | 0.0550 | 400 | 1.3625 |
13.0282 | 0.0688 | 500 | 1.3484 |
8.9636 | 0.0826 | 600 | 1.3389 |
9.1362 | 0.0963 | 700 | 1.3366 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Romain-XV/8ce2d2b2-df8e-49c2-991a-52d0e53001e8
Base model
NousResearch/Yarn-Mistral-7b-128k