SentenceTransformer based on klue/roberta-base

This is a sentence-transformers model finetuned from klue/roberta-base on the klue dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: klue/roberta-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: ko

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '보일러로 난방하는 방법 좀 알려줘',
    '보일러 켜는 방법 좀 설명해줘',
    '당신이 좋아하는 뉴스 채널이 뭐였더라?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric sts-test sts-eval
pearson_cosine 0.3477 0.9608
spearman_cosine 0.3556 0.9196

Training Details

Training Dataset

klue

  • Dataset: klue at 349481e
  • Size: 10,501 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 6 tokens
    • mean: 20.29 tokens
    • max: 58 tokens
    • min: 7 tokens
    • mean: 19.81 tokens
    • max: 55 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence1 sentence2 label
    시설은 좋으나 잠자리 민감하신 분들은 다른 곳으로 가세요 시설도 좋지만, 잠자리라면 다른 곳으로 가보세요. 0.6799999999999999
    유럽 에어비엔비 숙소 중에서 제일 잘 터졌습니다! 유럽에서 가장 좋은 호텔이에요! 0.38
    고모가 원하는게 볼륨 이단계야 삼단계야? 에어컨 사용료로 이번 달 얼마 정도 내야하나요? 0.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

klue

  • Dataset: klue at 349481e
  • Size: 1,167 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 6 tokens
    • mean: 19.99 tokens
    • max: 62 tokens
    • min: 7 tokens
    • mean: 19.26 tokens
    • max: 64 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence1 sentence2 label
    4인은 멀티탭을 1개 준비하시면 편할것입니다. 멀티탭 1개를 준비하시면 4명이 편리하게 이용하실 수 있습니다. 0.6799999999999999
    청결도, 화장실청소상태,방분위기 모두 훌륭했습니다. 체크인, 청소 및 고객서비스는 모두 훌륭했습니다. 0.26
    심지어 사진보다 조금 넓었던 것 같다. 그것은 심지어 사진보다 조금 더 넓었습니다. 0.8
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • warmup_steps: 100
  • remove_unused_columns: False

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 100
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: False
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss sts-test_spearman_cosine sts-eval_spearman_cosine
-1 -1 - - 0.3556 -
0.7610 500 0.0272 - - -
1.5221 1000 0.0095 0.0172 - 0.9120
2.2831 1500 0.0059 - - -
3.0441 2000 0.004 0.0146 - 0.9196
3.8052 2500 0.0025 - - -

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.013 kWh
  • Carbon Emitted: 0.006 kg of CO2
  • Hours Used: 0.036 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 4090
  • CPU Model: Intel(R) Core(TM) i7-14700K
  • RAM Size: 62.51 GB

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 4.0.1
  • Transformers: 4.50.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 0.34.1
  • Datasets: 2.19.1
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
4
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for SECUFIBRE/klue-roberta-base-klue-sts

Base model

klue/roberta-base
Finetuned
(264)
this model

Dataset used to train SECUFIBRE/klue-roberta-base-klue-sts

Evaluation results