File size: 3,736 Bytes
5838aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2a204
 
5838aa1
2e2a204
 
 
 
5838aa1
2e2a204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# coding=utf-8
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers import AutoConfig  

logger = logging.get_logger(__name__)

SAPNOUS_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "Sapnous-AI/Sapnous-VR-6B": "https://huggingface.co/Sapnous-AI/Sapnous-VR-6B/resolve/main/config.json",
}

class SapnousT1Config(PretrainedConfig):
    model_type = "sapnous_t1"

    def __init__(

        self,

        vocab_size=151936,

        hidden_size=5120,

        intermediate_size=20480,

        num_hidden_layers=36,

        num_attention_heads=40,

        num_key_value_heads=8,

        hidden_act="silu",

        max_position_embeddings=128000,

        initializer_range=0.02,

        rms_norm_eps=1e-6,

        use_cache=True,

        pad_token_id=None,

        bos_token_id=151643,

        eos_token_id=151645,

        tie_word_embeddings=True,

        vision_start_token_id=151652,

        vision_end_token_id=151653,

        vision_token_id=151654,

        image_token_id=151655,

        video_token_id=151656,

        vision_config=None,

        rope_theta=1000000.0,

        sliding_window=32768,

        use_sliding_window=False,

        max_window_layers=70,

        attention_dropout=0.0,

        rope_scaling=None,

        scoring_func="softmax",

        aux_loss_alpha=0.001,

        seq_aux=True,

        **kwargs

    ):
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.vision_start_token_id = vision_start_token_id
        self.vision_end_token_id = vision_end_token_id
        self.vision_token_id = vision_token_id
        self.image_token_id = image_token_id
        self.video_token_id = video_token_id
        self.vision_config = vision_config
        self.rope_theta = rope_theta
        self.sliding_window = sliding_window
        self.use_sliding_window = use_sliding_window
        self.max_window_layers = max_window_layers
        self.attention_dropout = attention_dropout
        self.rope_scaling = rope_scaling
        self.scoring_func = scoring_func
        self.aux_loss_alpha = aux_loss_alpha
        self.seq_aux = seq_aux

    model_type = "sapnous_t1"
    keys_to_ignore_at_inference = ["past_key_values"]

# ✅ Register after defining the class
AutoConfig.register("sapnous_t1", SapnousT1Config)