File size: 11,268 Bytes
5838aa1
2e2a204
 
5838aa1
 
2e2a204
5838aa1
 
 
2e2a204
 
 
 
5838aa1
2e2a204
 
 
 
 
 
5838aa1
 
2e2a204
5838aa1
2e2a204
 
5838aa1
 
 
 
 
 
 
 
 
 
2e2a204
 
5838aa1
2e2a204
 
5838aa1
2e2a204
5838aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2a204
 
5838aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2a204
 
5838aa1
 
 
2e2a204
 
 
 
 
5838aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2a204
 
5838aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2a204
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, List, Union
from transformers import PreTrainedModel, AutoModelForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast
from .configuration_sapnous import SapnousT1Config
from .attention_sapnous import SapnousAttention, SapnousBlock, SapnousVisionEmbeddings, precompute_freqs_cis

class SapnousT1PreTrainedModel(PreTrainedModel):
    """Base class for all Sapnous-T1 models."""
    config_class = SapnousT1Config
    base_model_prefix = "sapnous"

    def __init__(self, config: SapnousT1Config):
        super().__init__(config)
        self.config = config

    def _init_weights(self, module):
        """Initialize weights using the model's initialization configuration."""
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, SapnousAttention):
            module.q_proj.weight.data.normal_(mean=0.0, std=std)
            module.k_proj.weight.data.normal_(mean=0.0, std=std)
            module.v_proj.weight.data.normal_(mean=0.0, std=std)
            module.o_proj.weight.data.normal_(mean=0.0, std=std)

class SapnousT1Model(SapnousT1PreTrainedModel):
    """Base Transformer Model with advanced attention mechanisms and optional vision support."""
    def __init__(self, config: SapnousT1Config):
        super().__init__(config)
        
        self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
        self.layers = nn.ModuleList([SapnousBlock(config) for _ in range(config.num_hidden_layers)])
        self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
        
        # Vision support
        self.vision_embed = SapnousVisionEmbeddings(config) if getattr(config, 'vision_config', None) else None
        
        # Initialize weights and apply final processing
        self.post_init()
        
        # Compute and cache RoPE frequencies
        self.freqs_cis = precompute_freqs_cis(
            self.config.hidden_size // self.config.num_attention_heads,
            self.config.max_position_embeddings,
            self.config.rope_theta,
        )

    def get_input_embeddings(self) -> nn.Module:
        return self.embeddings

    def set_input_embeddings(self, value: nn.Module):
        self.embeddings = value

    def forward(

        self,

        input_ids: Optional[torch.LongTensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,

        inputs_embeds: Optional[torch.FloatTensor] = None,

        pixel_values: Optional[torch.FloatTensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds")

        # Process text input
        if input_ids is not None:
            inputs_embeds = self.embeddings(input_ids)
            batch_size, seq_length = input_ids.shape[:2]
        else:
            batch_size, seq_length = inputs_embeds.shape[:2]

        # Process vision input if available
        if pixel_values is not None and self.vision_embed is not None:
            vision_embeds = self.vision_embed(pixel_values)
            inputs_embeds = torch.cat([vision_embeds, inputs_embeds], dim=1)
            seq_length = inputs_embeds.shape[1]

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0)

        # Prepare attention mask
        if attention_mask is not None:
            attention_mask = attention_mask.view(batch_size, -1)
            attention_mask = attention_mask[:, None, None, :]
            attention_mask = attention_mask.to(dtype=inputs_embeds.dtype)
            attention_mask = (1.0 - attention_mask) * torch.finfo(inputs_embeds.dtype).min

        freqs_cis = self.freqs_cis.to(inputs_embeds.device)
        
        hidden_states = inputs_embeds
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        for idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            past_key_value = past_key_values[idx] if past_key_values is not None else None

            layer_outputs = decoder_layer(
                hidden_states,
                freqs_cis=freqs_cis,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
            )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if not return_dict:
            return tuple(v for v in [
                hidden_states,
                next_decoder_cache,
                all_hidden_states,
                all_self_attns,
            ] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_decoder_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

class SapnousT1ForCausalLM(SapnousT1PreTrainedModel):
    """Sapnous-T1 Model for Causal Language Modeling with vision support."""
    _keys_to_ignore_on_load_missing = [r"lm_head.weight"]

    def __init__(self, config: SapnousT1Config):
        super().__init__(config)
        self.model = SapnousT1Model(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> nn.Module:
        return self.model.embeddings

    def set_input_embeddings(self, value: nn.Module):
        self.model.embeddings = value

    def get_output_embeddings(self) -> nn.Module:
        return self.lm_head

    def set_output_embeddings(self, new_embeddings: nn.Module):
        self.lm_head = new_embeddings

    def prepare_inputs_for_generation(

        self,

        input_ids: torch.LongTensor,

        past_key_values: Optional[List[Tuple[torch.Tensor]]] = None,

        attention_mask: Optional[torch.Tensor] = None,

        **kwargs,

    ) -> dict:
        if past_key_values:
            input_ids = input_ids[:, -1:]

        position_ids = kwargs.get("position_ids", None)
        if position_ids is None:
            position_ids = (attention_mask.long().cumsum(-1) - 1) if attention_mask is not None else None
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)

        return {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "position_ids": position_ids,
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache"),
            "pixel_values": kwargs.get("pixel_values", None),
        }

    def forward(

        self,

        input_ids: Optional[torch.LongTensor] = None,

        attention_mask: Optional[torch.Tensor] = None,

        position_ids: Optional[torch.LongTensor] = None,

        past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,

        inputs_embeds: Optional[torch.FloatTensor] = None,

        pixel_values: Optional[torch.FloatTensor] = None,

        labels: Optional[torch.LongTensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""Labels for computing the masked language modeling loss."""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            pixel_values=pixel_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def tie_weights(self):
        """Tie the weights between the input embeddings and the output embeddings."""
        self.lm_head.weight = self.model.embeddings.weight

# Register the model
AutoModelForCausalLM.register(SapnousT1Config, SapnousT1ForCausalLM)