File size: 6,515 Bytes
5838aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# coding=utf-8
# Copyright 2025-present, the HuggingFace Inc. Team and AIRAS Inc. Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from pathlib import Path
from transformers import AutoTokenizer
from .tokenization_sapnous import SapnousTokenizer

class TestSapnousTokenizer(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        # Create temporary vocab and merges files for testing
        cls.temp_dir = Path('test_tokenizer_files')
        cls.temp_dir.mkdir(exist_ok=True)
        
        # Create a simple test vocabulary
        cls.vocab_file = cls.temp_dir / 'vocab.json'
        cls.vocab = {
            '<|endoftext|>': 0,
            '<|startoftext|>': 1,
            '<|pad|>': 2,
            '<|vision_start|>': 3,
            '<|vision_end|>': 4,
            '<|image|>': 5,
            '<|video|>': 6,
            'hello': 7,
            'world': 8,
            'test': 9,
        }
        with cls.vocab_file.open('w', encoding='utf-8') as f:
            import json
            json.dump(cls.vocab, f)
        
        # Create test merges file
        cls.merges_file = cls.temp_dir / 'merges.txt'
        merges_content = "#version: 0.2\nh e\ne l\nl l\no w\nw o\no r\nr l\nl d"
        cls.merges_file.write_text(merges_content)
        
        # Initialize tokenizer
        cls.tokenizer = SapnousTokenizer(
            str(cls.vocab_file),
            str(cls.merges_file),
        )
    
    @classmethod
    def tearDownClass(cls):
        # Clean up temporary files
        import shutil
        shutil.rmtree(cls.temp_dir)
    
    def test_tokenizer_initialization(self):
        self.assertEqual(self.tokenizer.vocab_size, len(self.vocab))
        self.assertEqual(self.tokenizer.get_vocab(), self.vocab)
        
        # Test special tokens
        self.assertEqual(self.tokenizer.unk_token, '<|endoftext|>')
        self.assertEqual(self.tokenizer.bos_token, '<|startoftext|>')
        self.assertEqual(self.tokenizer.eos_token, '<|endoftext|>')
        self.assertEqual(self.tokenizer.pad_token, '<|pad|>')
    
    def test_tokenization(self):
        text = "hello world test"
        tokens = self.tokenizer.tokenize(text)
        self.assertIsInstance(tokens, list)
        self.assertTrue(all(isinstance(token, str) for token in tokens))
        
        # Test encoding
        input_ids = self.tokenizer.encode(text, add_special_tokens=False)
        self.assertIsInstance(input_ids, list)
        self.assertEqual(len(input_ids), 3)  # 'hello', 'world', 'test'
        
        # Test decoding
        decoded_text = self.tokenizer.decode(input_ids)
        self.assertEqual(decoded_text.strip(), text)
    
    def test_special_tokens_handling(self):
        text = "hello world"
        # Test with special tokens
        tokens_with_special = self.tokenizer.encode(text, add_special_tokens=True)
        self.assertTrue(tokens_with_special[0] == self.tokenizer.bos_token_id)
        self.assertTrue(tokens_with_special[-1] == self.tokenizer.eos_token_id)
        
        # Test without special tokens
        tokens_without_special = self.tokenizer.encode(text, add_special_tokens=False)
        self.assertNotEqual(tokens_without_special[0], self.tokenizer.bos_token_id)
        self.assertNotEqual(tokens_without_special[-1], self.tokenizer.eos_token_id)
    
    def test_vision_tokens(self):
        # Test vision-specific token methods
        text = "This is an image description"
        vision_text = self.tokenizer.prepare_for_vision(text)
        self.assertTrue(vision_text.startswith('<|vision_start|>'))
        self.assertTrue(vision_text.endswith('<|vision_end|>'))
        
        image_text = self.tokenizer.prepare_for_image(text)
        self.assertTrue(image_text.startswith('<|image|>'))
        
        video_text = self.tokenizer.prepare_for_video(text)
        self.assertTrue(video_text.startswith('<|video|>'))
    
    def test_batch_encoding(self):
        texts = ["hello world", "test hello"]
        batch_encoding = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
        
        self.assertIsInstance(batch_encoding["input_ids"], torch.Tensor)
        self.assertIsInstance(batch_encoding["attention_mask"], torch.Tensor)
        self.assertEqual(batch_encoding["input_ids"].shape[0], len(texts))
        self.assertEqual(batch_encoding["attention_mask"].shape[0], len(texts))
    
    def test_save_and_load(self):
        # Test saving vocabulary
        save_dir = Path('test_save_tokenizer')
        save_dir.mkdir(exist_ok=True)
        
        try:
            vocab_files = self.tokenizer.save_vocabulary(str(save_dir))
            self.assertTrue(all(Path(f).exists() for f in vocab_files))
            
            # Test loading saved vocabulary
            loaded_tokenizer = SapnousTokenizer(*vocab_files)
            self.assertEqual(loaded_tokenizer.get_vocab(), self.tokenizer.get_vocab())
            
            # Test encoding/decoding with loaded tokenizer
            text = "hello world test"
            original_encoding = self.tokenizer.encode(text)
            loaded_encoding = loaded_tokenizer.encode(text)
            self.assertEqual(original_encoding, loaded_encoding)
        finally:
            # Clean up
            import shutil
            shutil.rmtree(save_dir)
    
    def test_auto_tokenizer_registration(self):
        # Test if the tokenizer can be loaded using AutoTokenizer
        config = {
            "model_type": "sapnous",
            "vocab_file": str(self.vocab_file),
            "merges_file": str(self.merges_file)
        }
        
        tokenizer = AutoTokenizer.from_pretrained(str(self.temp_dir), **config)
        self.assertIsInstance(tokenizer, SapnousTokenizer)

if __name__ == '__main__':
    unittest.main()