license: cc-by-nc-sa-4.0
language:
- fr
metrics:
- wer
model-index:
- name: asr-wav2vec2-LB7K-spontaneous-fr
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ETAPE
type: ETAPE
split: test
args:
language: fr
metrics:
- name: Test WER
type: wer
value: '27.81'
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CV 6.1
type: CommonVoice
split: test
args:
language: fr
metrics:
- name: Test WER
type: wer
value: '21.69'
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: AllSpont
type: AllSpont
split: test
args:
language: fr
metrics:
- name: Test WER
type: wer
value: '26.80'
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Unusual_distant ("peu spontané")
type: Unusual_distant
split: test
args:
language: fr
metrics:
- name: Test WER
type: wer
value: '13.44'
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Unusual_close ("moyennement spontané")
type: Unusual_close
split: test
args:
language: fr
metrics:
- name: Test WER
type: wer
value: '23.36'
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Usual_close ("très spontané")
type: Usual_close
split: test
args:
language: fr
metrics:
- name: Test WER
type: wer
value: '51.97'
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: AllCases
type: AllCases
split: test
args:
language: fr
metrics:
- name: Test WER
type: wer
value: '29.41'
library_name: speechbrain
pipeline_tag: automatic-speech-recognition
tags:
- CTC
- pytorch
- asr
- speechbrain
- spontaneous speech
Wav2Vec 2.0 avec CTC adapté sur de la parole spontanée en français
- Système développé dans le cadre des travaux de thèse de Solène Evain: https://theses.fr/2024GRALM037
- Date: Janvier 2024
- Type de modèle: Wav2Vec 2.0 + CTC pour reconnaissance automatique de la parole
La recette d'entraînement de ce système a été suivie: https://huggingface.co/speechbrain/asr-wav2vec2-commonvoice-fr
Modèle Wav2Vec 2.0 : LeBenchmark 7k large https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large
Les scripts sont à retrouver sur le repo Gitlab de la thèse: https://gitlab.com/solene-evain/recops/Domain_adaptations/7k_domainAdaptation/
Speechbrain version: 0.5.11
Licence: CC BY NC SA 4.0
Données d'apprentissage, de dev et de test AllSpont:
Les données dites "AllSpont" sont réparties en trois ensembles train, dev et test. Train: 268h55 de parole spontanée (heures effectives de parole) Dev: 34h06 Test: 34h06
Les données sont issues (partiellement ou en totalité) des corpus suivants:
Français de | Corpus | Heures |
---|---|---|
France | TCOF | 23h |
France | ESLO2 | 41h22 |
France | CLAPI | 2h05 |
France | CFPP | 35h47 |
France | C-ORAL-ROM | 16h05 |
France | REUNIONS | 9h36 |
France | CID | 6h32 |
France | TUFS | 27h15 |
France | CRFP | 25h57 |
France | PFC | 13h14 |
France | FLEURON | 2h18 |
N/A | PFC | 10h12 |
N/A | TCOF | 2h33 |
N/A | MPF | 17h50 |
Suisse | OFROM | 18h16 |
Suisse | PFC | 5h13 |
Belgique | CFPB | 7h39 |
Pour tout besoin de détail sur les fichiers wav inclus dans le train, voir rubrique "contact".
Données d'évaluation
- Usual_close: 1h28 de parole effective (ESLO2: 0h12, CLAPI: 1h15) ("très spontané")
- Unusual_close: 1h25 de parole effective (CFPB: 1h25) ("moyennement spontané")
- Unusual_distant: 1h40 de parole effective (CRFP: 0h47, ESLO2: 0h52) ("peu spontané")
- AllCases: Usual_close + Unusual_colse + Unusual_distant
- AllSpont test: (voir section "Données d'apprentissage, de dev et de test AllSpont")
- ETAPE: https://aclanthology.org/L12-1270/
- CV: CommonVoice version 6.1
Comparaison avec d'autres systèmes:
Système | Usual_close | Unusual_close | Unusual_distant | AllCases | AllSpont | ETAPE | CV 6.1 |
---|---|---|---|---|---|---|---|
Whisper large-v2 | 51.97 | 23.36 | 13.44 | 29.41 | 26.80 | 27.81 | 21.69 |
asr-wav2vec2-commonvoice-fr (CV 6.1, LeBenchmark-7k-large) | 80.85 | 52.66 | 32.16 | 55.14 | 51.2 | 36.55 | 9.97 |
Décoder ses propres enregistrements:
(Test effectué avec Speechbrain 1.0.2)
pip install speechbrain transformers
from speechbrain.inference.ASR import EncoderASR
asr_model = EncoderASR.from_hparams(source="Sevain/asr-wav2vec2-LB7K-spontaneous-fr", savedir="pretrained_models/asr-wav2vec2-LB7K-spontaneous-fr")
asr_model.transcribe_file('path/to/your/file')
Citer les travaux:
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {https://github.com/speechbrain/speechbrain},
}
@phdthesis{evain:tel-04984659,
TITLE = {{Dimensions de variation de la parole spontan{\'e}e pour l'{\'e}tude inter-corpus des performances de syst{\`e}mes de reconnaissance automatique de la parole}},
AUTHOR = {Evain, Sol{\`e}ne},
URL = {https://theses.hal.science/tel-04984659},
NUMBER = {2024GRALM037},
SCHOOL = {{Universit{\'e} Grenoble Alpes}},
YEAR = {2024},
MONTH = Oct,
KEYWORDS = {Automatic speech recognition ; Spontaneous speech ; Deep learning ; Reconnaissance automatique de la parole ; Parole spontan{\'e}e ; Apprentissage profond},
TYPE = {Theses},
PDF = {https://theses.hal.science/tel-04984659v1/file/EVAIN_2024_archivage.pdf},
HAL_ID = {tel-04984659},
HAL_VERSION = {v1},
}
Contact:
Solène Evain ([email protected])
Caveats and recommendations
We do not provide any warranty on the performance achieved by this model when used on other datasets