Quantised-models
Collection
23 items
•
Updated
!pip install --upgrade auto-round transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from auto_round import AutoRoundConfig ## must import for auto-round format
quantized_model_path = "Siddharth63/Qwen3-8B-Base-2bits-AutoRound-GPTQ-sym"
quantization_config = AutoRoundConfig(backend="auto")
model = AutoModelForCausalLM.from_pretrained(quantized_model_path, device_map="auto",
torch_dtype=torch.float16,
quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(quantized_model_path)
text = "Atherosclerosis"
inputs = tokenizer(text, return_tensors="pt").to(model.device)
print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50)[0]))