TARARARAK's picture
Upload folder using huggingface_hub
49419f3 verified
---
base_model: nlpai-lab/KURE-v1
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:68
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 한동대에서는 학생들이 어떤 방식으로 성장하도록 장려하나요?
sentences:
- '제 54 조 (학생지도)
학업 및 학생생활을 지도하기 위하여 담임지도교수를 둘 수 있다.
담임지도교수는 학생이 건전한 사고방식을 지닌 유능한 학생이 되도록 학생지도에 최선의 노력을 다한다.'
- '제 32 조 (교양과목)
교양과목은 인문학ᆞ사회과학ᆞ자연과학ᆞ전공탐색ᆞ예체능ᆞ소통 및 융복합의 각 계열에 속하는 과목으로 편성하여 운영한다.'
- '제 51 조 (학생활동)
학생은 이 대학교의 건학정신에 따라 덕성을 기르고 교칙을 준수하며 전심ᆞ성의로 학업에 종사하고 신체를 단련하여 사회의 지도자가 될 자질을 닦아야
한다.'
- source_sentence: 한동대학교 교수회의 역할은 무엇인가요?
sentences:
- '제 15 조 (입학 관련 위원회)
입학전형의 공정하고 원활한 관리를 위하여 입시공정관리위원회와 입학전형관리위원회를둔다.
입시공정관리위원회와 입학전형관리위원회는 총장 직속으로 구성하되, 그 구성, 기능 및 운영에 관한 사항은 관련 지침 등에 따르거나, 총장이 따로
정한다.'
- '제 68 조 (기능)
학사에 관한 중요사항 등을 심의하기 위하여 교수회를 둔다.'
- '제 52 조 (총학생회)
건전한 학풍을 조성하고 학생자치활동을 신장시키기 위하여 한동대학교 총학생회(이하 "총학생회"라 한다)를 둔다.
총학생회의 조직과 운영에 관한 사항은 총장의 승인을 얻어 학생회칙으로 따로 정한다.
전시·사변 또는 이에 준하는 국가 비상사태시에는 그 활동이 정지된다.'
- source_sentence: 한동대학교에서 질병 등으로 시험을 보면 추가시험을 신청할 있나요? 절차는 어떻게 되나요?
sentences:
- '제 41 조 (추가시험)
질병 기타 부득이한 사고로 인하여 시험에 응하지 못할 경우에는 사전에 추가시험원을 제출하여 학과(부)장의 승인을 받아야 한다.'
- '제 11 조 (입학자격)
제1학년에 입학할 수 있는 자는 다음 각호의 1에 해당하는 자이어야 한다.
고등학교 졸업자 또는 졸업예정자.
고등학교 졸업학력 검정고시 합격자.
외국의 초,중,고등학교 전학교 교육과정을 이수한 자.
기타 법령에 의하여 고등학교 졸업자와 동등이상의 학력이 있다고 인정된 자.'
- '제 39 조 (시험)
시험은 매학기 2회 이상 실시한다.'
- source_sentence: 한동대학교에 합격한 어떤 절차를 언제까지 마쳐야 하나요? 기한을 넘기면 어떻게 되나요?
sentences:
- '제 66 조 (장학금)
이 대학교 학생중 품행이 방정하고 학업성적이 우수한 자와 가계곤란으로 학업계속에 지장이 있는 학생에 대하여는 장학금을 지급할 수 있다.
장학금 지급에 관한 세부사항은 총장이 따로 정한다.'
- '제 17 조 (입학절차)
입학허가 예정자는 지정된 기일 내 소정의 서류를 제출하고 수학에 필요한 제반절차를 이행하여야 한다.
이유없이 기일 내 제1항의 절차를 이행하지 않을 때에는 입학허가를 취소한다.'
- "제 8 조 (수업일수)\n수업일수는 매학년도 30주(매학기 15주)이상으로 한다.\n다만, 교과목 특성 등을 고려하여 총장이 필요하다고 특별히\
\ 인정하는 경우에는 해당 교과의 수업일수를 단축하여 운영할 수 있으며, 이 경우 학점당 15시간 이상의 수업시간을 준수하여야 한다.\n자유학기\
\ 및 혁신학기의 수업일수는 별도로 하며, 이에 관한 세부사항은 총장이 따로 정한다. \n천재지변, 기타 교무 형편상 부득이한 사유로 소정의\
\ 수업일수를 충당할 수 없는 경우에는 고등교육법시행령 제11조 제3항의 규정에 따라 2주이내의 범위에서 수업일수를 감축할 수 있다."
- source_sentence: 입학 부정행위가 있으면 한동대에서는 어떤 조치를 하나요?
sentences:
- '제 16 조 (입학허가 및 특별과정)
입학은 총장이 허가하되, 제출 서류의 허위기재, 서류의 위조, 변조, 대리시험 또는 시험부정행위 등 입학 부정행위가 입학허가 전에 그 사실이
판명된 때에는 불합격처리하고 입학허가 후에 사실이 판명된 때에도 입학을 취소한다.
특별과정 운영에 관한 세부사항은 총장이 따로 정한다.'
- '제 34 조 (예비과정)
다음 각 호의 1에 해당하는 자로서 총장이 필요하다고 인정하는 자는 입학전이라도 예비 교육과정을 이수케 할 수 있으며, 여기서 이수한 과목에
대하여는 입학후 학점을 인정 할 수 있다.
외국인 학생.
교포,외교관등의 자녀.
기타 예비과정 수강이 필요하다고 총장이 인정하는자.
예비과정의 개설과목, 실시간,학점인정등 예비과정 운영에 필요한 세부사항은 총장이 따로 정한다.'
- "제 19 조 (편입학)\n입학전형은 당해연도 교육부의 대학 편입학 전형 기본계획과 이 대학교 모집요강에 따라 선발한다.\n편입학은 편입학\
\ 하고자 하는 학년의 직전 학기까지의 과정을 수료한 자 또는 이와 동등이상의 학력이 있다고 인정된 자로서 모집단위 별 1학년 또는 2학년\
\ 학생 중 직전 학기 및 직전 학년도에 제적된 인원을 소정의 절차를 거쳐 모집할 수 있다.\n다만, 법령이 정하는 경우는 정원의 제한 없이\
\ 정원외 편입학을 허가할 수 있다.\n학사학위를 취득한 자는 3학년에 편입학할 수 있다.\n다만, 편입학할 수 있는 인원은 당해 학년 입학정원의\
\ 5퍼센트 이내이어야 하고, 당해 학년 모집단위별 입학정원의 10퍼센트를 초과할 수 없다.\n제출 서류의 허위기재, 서류의 위조, 변조,\
\ 대리시험 또는 시험부정행위 등 편입학 부정행위가 편입학허가 전에 그 사실이 판명된 때에는 불합격처리 하고 편입학 허가 후에 사실이 판명된\
\ 때에도 편입학을 취소하고 학적을 말소한다. \n편입학한 학생이 전적학교에서 취득한 학점은 졸업 학점의 2분의 1 범위내에서 이 대학교 학점으로\
\ 인정할 수 있다."
---
# SentenceTransformer based on nlpai-lab/KURE-v1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nlpai-lab/KURE-v1](https://huggingface.co/nlpai-lab/KURE-v1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nlpai-lab/KURE-v1](https://huggingface.co/nlpai-lab/KURE-v1) <!-- at revision d14c8a9423946e268a0c9952fecf3a7aabd73bd9 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'입학 부정행위가 있으면 한동대에서는 어떤 조치를 하나요?',
'제 16 조 (입학허가 및 특별과정)\n입학은 총장이 허가하되, 제출 서류의 허위기재, 서류의 위조, 변조, 대리시험 또는 시험부정행위 등 입학 부정행위가 입학허가 전에 그 사실이 판명된 때에는 불합격처리하고 입학허가 후에 사실이 판명된 때에도 입학을 취소한다.\n특별과정 운영에 관한 세부사항은 총장이 따로 정한다.',
'제 19 조 (편입학)\n입학전형은 당해연도 교육부의 대학 편입학 전형 기본계획과 이 대학교 모집요강에 따라 선발한다.\n편입학은 편입학 하고자 하는 학년의 직전 학기까지의 과정을 수료한 자 또는 이와 동등이상의 학력이 있다고 인정된 자로서 모집단위 별 1학년 또는 2학년 학생 중 직전 학기 및 직전 학년도에 제적된 인원을 소정의 절차를 거쳐 모집할 수 있다.\n다만, 법령이 정하는 경우는 정원의 제한 없이 정원외 편입학을 허가할 수 있다.\n학사학위를 취득한 자는 3학년에 편입학할 수 있다.\n다만, 편입학할 수 있는 인원은 당해 학년 입학정원의 5퍼센트 이내이어야 하고, 당해 학년 모집단위별 입학정원의 10퍼센트를 초과할 수 없다.\n제출 서류의 허위기재, 서류의 위조, 변조, 대리시험 또는 시험부정행위 등 편입학 부정행위가 편입학허가 전에 그 사실이 판명된 때에는 불합격처리 하고 편입학 허가 후에 사실이 판명된 때에도 편입학을 취소하고 학적을 말소한다. \n편입학한 학생이 전적학교에서 취득한 학점은 졸업 학점의 2분의 1 범위내에서 이 대학교 학점으로 인정할 수 있다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 68 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 68 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 12 tokens</li><li>mean: 25.01 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 112.38 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:---------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>한동대학교에서 어떤 경우에 제적 처리가 되나요? 특별한 사정이 있으면 예외가 인정되기도 하나요?</code> | <code>제 28 조 (제적)<br>학생으로서 다음 각호의 1에 해당하는 자는 제적한다.<br>휴학기간 경과후 복학하여야 하는 학기의 소정기간내에 복학하지 않은 자.<br>등록금 분납신청자중 소정의 기간내에 완납하지 못한 자.<br>학사경고를 연속 3회 또는 통산 4회 받은 자.<br>재학연한을 초과한 자.<br>제1항 제1호의 경우 제적 처리를 원칙으로 하되, 교무처장이 인정하는 경우, 해당학기에 휴학연장으로 처리할 수 있다.<br>제1항 제4호의 경우 제적 처리를 원칙으로 하되, 질병 또는 이에 준하는 특별한 사유가 있다고 총장이 인정한 경우에는 1회에 한하여 제적을 유보하고 권고휴학을 하도록 할 수 있다.</code> |
| <code>한동대학교에서는 수강한 과목을 철회하거나 다시 들을 수 있나요? 재이수는 어떤 기준으로 가능한가요?</code> | <code>제 43 조 (수강과목 철회 및 재이수)<br>수강신청한 과목을 철회할 수 있으며, 이에 관한 세부사항은 학사운영규정으로 정한다.<br>이미 이수한 과목을 재이수하고자 할 때는 재이수 신청을 하여 이미 취득한 학점을 취소하고 재이수할 수 있다.<br>재이수는 성적이 "C+"이하인 과목에 한하여 허용한다. 다만, 총장이 특별히 필요하다고 인정하는 경우에는 그러하지 아니하다.</code> |
| <code>한동대학교에서는 실험실습비나 기타 납입금을 별도로 징수하나요?</code> | <code>제 62 조 (실험실습비 및 기타 납입금)<br>실험실습비 및 기타 납입금에 관한 비용은 실비를 따로 징수할 수 있다.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 1
- `per_device_eval_batch_size`: 1
- `num_train_epochs`: 7
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 1
- `per_device_eval_batch_size`: 1
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 7
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step |
|:------:|:----:|
| 0.5882 | 20 |
### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.3.1
- Transformers: 4.46.2
- PyTorch: 2.0.1+cu118
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.20.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->