BGE base Financial Matryoshka
This is a sentence-transformers model trained on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("TharunSivamani/bge-base-financial-matryoshka")
# Run inference
sentences = [
'Is there a cost to access reports filed by Intuit Inc. with the SEC?',
'We make available free of charge on the Investor Relations section of our corporate website all of the reports we file with or furnish to the SEC as soon as reasonably practicable, after the reports are filed or furnished.',
'The net cash provided by operating activities during fiscal 2023 was related to net income of $208 million, adjusted for non-cash items including $3.8 billion of depreciation and amortization and $3.3 billion related to stock-based compensation expense.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.6729 | 0.6614 | 0.66 | 0.6529 | 0.6243 |
cosine_accuracy@3 | 0.8057 | 0.81 | 0.7986 | 0.7843 | 0.7614 |
cosine_accuracy@5 | 0.8514 | 0.8557 | 0.8371 | 0.8329 | 0.7971 |
cosine_accuracy@10 | 0.9029 | 0.9029 | 0.8957 | 0.88 | 0.8514 |
cosine_precision@1 | 0.6729 | 0.6614 | 0.66 | 0.6529 | 0.6243 |
cosine_precision@3 | 0.2686 | 0.27 | 0.2662 | 0.2614 | 0.2538 |
cosine_precision@5 | 0.1703 | 0.1711 | 0.1674 | 0.1666 | 0.1594 |
cosine_precision@10 | 0.0903 | 0.0903 | 0.0896 | 0.088 | 0.0851 |
cosine_recall@1 | 0.6729 | 0.6614 | 0.66 | 0.6529 | 0.6243 |
cosine_recall@3 | 0.8057 | 0.81 | 0.7986 | 0.7843 | 0.7614 |
cosine_recall@5 | 0.8514 | 0.8557 | 0.8371 | 0.8329 | 0.7971 |
cosine_recall@10 | 0.9029 | 0.9029 | 0.8957 | 0.88 | 0.8514 |
cosine_ndcg@10 | 0.7852 | 0.7823 | 0.7765 | 0.7645 | 0.7369 |
cosine_mrr@10 | 0.7479 | 0.7437 | 0.7385 | 0.7276 | 0.7003 |
cosine_map@100 | 0.7521 | 0.7477 | 0.7426 | 0.7322 | 0.7052 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 20.53 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 46.0 tokens
- max: 326 tokens
- Samples:
anchor positive What are the valuation models commonly used for different types of derivatives, as mentioned in the example?
Interest rates, currencies and equities derivatives are valued using option pricing models, credit derivatives are valued using option pricing, correlation and discounted cash flow models, and commodities derivatives are valued using option pricing and discounted cash flow models.
What benefits are included in Intuit's total rewards compensation philosophy?
Intuit's compensation philosophy includes base pay, incentive plans, equity, healthcare, retirement benefits, paid time off, and access to various employee support programs, emphasizing a philosophy of pay for performance and rewarding top performers.
What was the primary cause for the decrease in Commercial and other receivables in 2022?
The decrease in Commercial and other receivables for 2022 primarily relates to the Gentiva Hospice disposition.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
1.0 | 4 | - | 0.7696 | 0.7699 | 0.7630 | 0.7443 | 0.7015 |
2.0 | 8 | - | 0.7815 | 0.7792 | 0.7736 | 0.7620 | 0.7288 |
2.64 | 10 | 2.8646 | - | - | - | - | - |
3.0 | 12 | - | 0.7852 | 0.7823 | 0.7765 | 0.7645 | 0.7369 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.4.1
- Transformers: 4.47.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.673
- Cosine Accuracy@3 on dim 768self-reported0.806
- Cosine Accuracy@5 on dim 768self-reported0.851
- Cosine Accuracy@10 on dim 768self-reported0.903
- Cosine Precision@1 on dim 768self-reported0.673
- Cosine Precision@3 on dim 768self-reported0.269
- Cosine Precision@5 on dim 768self-reported0.170
- Cosine Precision@10 on dim 768self-reported0.090
- Cosine Recall@1 on dim 768self-reported0.673
- Cosine Recall@3 on dim 768self-reported0.806