ImageQuality-R1-v1
This is a demo version of ImageQuality-R1 which is trained on the combination of KADID-10K, TID2013, and KONIQ-10K. The base model of ImageQuality-R1 is Qwen2.5-VL-7B-Instruct.
Quick Start
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
import json
import numpy as np
import torch
import random
import re
import os
def score_image(model_path, image_path):
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map=device,
)
processor = AutoProcessor.from_pretrained(MODEL_PATH)
processor.tokenizer.padding_side = "left"
PROMPT = (
"You are doing the image quality assessment task. Here is the question: "
"What is your overall rating on the quality of this picture? The rating should be a float between 1 and 5, "
"rounded to two decimal places, with 1 representing very poor quality and 5 representing excellent quality."
)
x = {
"image": [image_path],
"question": PROMPT,
}
QUESTION_TEMPLATE = "{Question} First output the thinking process in <think> </think> tags and then output the final answer with only one score in <answer> </answer> tags."
message = [
{
"role": "user",
"content": [
*({'type': 'image', 'image': img_path} for img_path in x['image']),
{"type": "text", "text": QUESTION_TEMPLATE.format(Question=x['question'])}
],
}
]
batch_messages = [message]
# Preparation for inference
text = [processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True, add_vision_id=True) for msg in batch_messages]
image_inputs, video_inputs = process_vision_info(batch_messages)
inputs = processor(
text=text,
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(device)
# Inference: Generation of the output
generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=256, do_sample=True)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
batch_output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
reasoning = re.findall(r'<think>(.*?)</think>', batch_output_text[0], re.DOTALL)
reasoning = reasoning[-1].strip()
model_output_matches = re.findall(r'<answer>(.*?)</answer>', batch_output_text[0], re.DOTALL)
model_answer = model_output_matches[-1].strip()
score = float(re.search(r'\d+(\.\d+)?', model_answer).group())
return reasoning, score
random.seed(42)
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
### Modify here
model_path = ""
image_path = ""
reasoning, score = score_image(
model_path=model_path,
image_path=image_path
)
print(reasoning)
print(score)
- Downloads last month
- 0
Model tree for TianheWu/ImageQuality-R1-v1
Base model
Qwen/Qwen2.5-VL-7B-Instruct