model-960hfacebook-2022.06.08
This model is a fine-tuned version of facebook/wav2vec2-large-960h-lv60-self on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.2907
- Wer: 0.1804
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 25
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.7634 | 0.21 | 300 | 2.9743 | 0.9998 |
1.6536 | 0.43 | 600 | 0.8605 | 0.7529 |
0.9823 | 0.64 | 900 | 0.6600 | 0.6286 |
0.8708 | 0.86 | 1200 | 0.5780 | 0.5736 |
0.7878 | 1.07 | 1500 | 0.5386 | 0.5326 |
0.7033 | 1.29 | 1800 | 0.4986 | 0.4992 |
0.681 | 1.5 | 2100 | 0.4575 | 0.4778 |
0.6537 | 1.72 | 2400 | 0.4591 | 0.4482 |
0.6263 | 1.93 | 2700 | 0.4317 | 0.4353 |
0.5811 | 2.14 | 3000 | 0.4149 | 0.4159 |
0.5565 | 2.36 | 3300 | 0.4170 | 0.3956 |
0.5501 | 2.57 | 3600 | 0.4007 | 0.3929 |
0.5444 | 2.79 | 3900 | 0.3930 | 0.3851 |
0.5177 | 3.0 | 4200 | 0.4006 | 0.3630 |
0.4682 | 3.22 | 4500 | 0.3707 | 0.3713 |
0.4805 | 3.43 | 4800 | 0.3564 | 0.3583 |
0.4715 | 3.65 | 5100 | 0.3596 | 0.3434 |
0.4482 | 3.86 | 5400 | 0.3555 | 0.3394 |
0.4407 | 4.07 | 5700 | 0.3680 | 0.3312 |
0.4134 | 4.29 | 6000 | 0.3534 | 0.3328 |
0.4165 | 4.5 | 6300 | 0.3294 | 0.3259 |
0.4196 | 4.72 | 6600 | 0.3353 | 0.3214 |
0.4117 | 4.93 | 6900 | 0.3266 | 0.3211 |
0.3847 | 5.15 | 7200 | 0.3365 | 0.3156 |
0.3687 | 5.36 | 7500 | 0.3233 | 0.3014 |
0.376 | 5.58 | 7800 | 0.3345 | 0.2979 |
0.3732 | 5.79 | 8100 | 0.3105 | 0.2882 |
0.3705 | 6.0 | 8400 | 0.3252 | 0.2935 |
0.3311 | 6.22 | 8700 | 0.3266 | 0.2911 |
0.3386 | 6.43 | 9000 | 0.2975 | 0.2765 |
0.337 | 6.65 | 9300 | 0.3070 | 0.2826 |
0.3458 | 6.86 | 9600 | 0.3090 | 0.2766 |
0.3218 | 7.08 | 9900 | 0.3117 | 0.2748 |
0.3041 | 7.29 | 10200 | 0.2989 | 0.2651 |
0.3031 | 7.51 | 10500 | 0.3210 | 0.2672 |
0.3037 | 7.72 | 10800 | 0.3040 | 0.2667 |
0.3126 | 7.93 | 11100 | 0.2867 | 0.2613 |
0.3005 | 8.15 | 11400 | 0.3075 | 0.2610 |
0.2802 | 8.36 | 11700 | 0.3129 | 0.2608 |
0.2785 | 8.58 | 12000 | 0.3002 | 0.2579 |
0.2788 | 8.79 | 12300 | 0.3063 | 0.2476 |
0.286 | 9.01 | 12600 | 0.2971 | 0.2495 |
0.2534 | 9.22 | 12900 | 0.2766 | 0.2452 |
0.2542 | 9.44 | 13200 | 0.2893 | 0.2405 |
0.2576 | 9.65 | 13500 | 0.3038 | 0.2518 |
0.2552 | 9.86 | 13800 | 0.2851 | 0.2429 |
0.2487 | 10.08 | 14100 | 0.2858 | 0.2356 |
0.2441 | 10.29 | 14400 | 0.2999 | 0.2364 |
0.2345 | 10.51 | 14700 | 0.2907 | 0.2373 |
0.2352 | 10.72 | 15000 | 0.2885 | 0.2402 |
0.2464 | 10.94 | 15300 | 0.2896 | 0.2339 |
0.2219 | 11.15 | 15600 | 0.2999 | 0.2351 |
0.2257 | 11.37 | 15900 | 0.2930 | 0.2326 |
0.2184 | 11.58 | 16200 | 0.2980 | 0.2353 |
0.2182 | 11.79 | 16500 | 0.2832 | 0.2296 |
0.2224 | 12.01 | 16800 | 0.2797 | 0.2285 |
0.1991 | 12.22 | 17100 | 0.2810 | 0.2296 |
0.1993 | 12.44 | 17400 | 0.2949 | 0.2253 |
0.2042 | 12.65 | 17700 | 0.2864 | 0.2207 |
0.2083 | 12.87 | 18000 | 0.2860 | 0.2278 |
0.1998 | 13.08 | 18300 | 0.2872 | 0.2232 |
0.1919 | 13.3 | 18600 | 0.2894 | 0.2247 |
0.1925 | 13.51 | 18900 | 0.3007 | 0.2234 |
0.1966 | 13.72 | 19200 | 0.2831 | 0.2176 |
0.1942 | 13.94 | 19500 | 0.2811 | 0.2161 |
0.1778 | 14.15 | 19800 | 0.2901 | 0.2196 |
0.1755 | 14.37 | 20100 | 0.2864 | 0.2188 |
0.1795 | 14.58 | 20400 | 0.2927 | 0.2170 |
0.1817 | 14.8 | 20700 | 0.2846 | 0.2156 |
0.1754 | 15.01 | 21000 | 0.3036 | 0.2137 |
0.1674 | 15.23 | 21300 | 0.2876 | 0.2156 |
0.171 | 15.44 | 21600 | 0.2812 | 0.2106 |
0.1603 | 15.65 | 21900 | 0.2692 | 0.2093 |
0.1663 | 15.87 | 22200 | 0.2745 | 0.2094 |
0.1608 | 16.08 | 22500 | 0.2807 | 0.2043 |
0.1555 | 16.3 | 22800 | 0.2872 | 0.2036 |
0.1546 | 16.51 | 23100 | 0.2837 | 0.2049 |
0.1515 | 16.73 | 23400 | 0.2746 | 0.2031 |
0.1571 | 16.94 | 23700 | 0.2767 | 0.2047 |
0.1498 | 17.16 | 24000 | 0.2837 | 0.2050 |
0.143 | 17.37 | 24300 | 0.2745 | 0.2038 |
0.1471 | 17.58 | 24600 | 0.2787 | 0.2004 |
0.1442 | 17.8 | 24900 | 0.2779 | 0.2005 |
0.1481 | 18.01 | 25200 | 0.2906 | 0.2021 |
0.1318 | 18.23 | 25500 | 0.2936 | 0.1991 |
0.1396 | 18.44 | 25800 | 0.2913 | 0.1984 |
0.144 | 18.66 | 26100 | 0.2806 | 0.1953 |
0.1341 | 18.87 | 26400 | 0.2896 | 0.1972 |
0.1375 | 19.09 | 26700 | 0.2937 | 0.2002 |
0.1286 | 19.3 | 27000 | 0.2929 | 0.1954 |
0.1242 | 19.51 | 27300 | 0.2968 | 0.1962 |
0.1305 | 19.73 | 27600 | 0.2879 | 0.1944 |
0.1287 | 19.94 | 27900 | 0.2850 | 0.1937 |
0.1286 | 20.16 | 28200 | 0.2910 | 0.1961 |
0.121 | 20.37 | 28500 | 0.2908 | 0.1912 |
0.1264 | 20.59 | 28800 | 0.2853 | 0.1904 |
0.1238 | 20.8 | 29100 | 0.2913 | 0.1926 |
0.117 | 21.02 | 29400 | 0.2907 | 0.1922 |
0.1154 | 21.23 | 29700 | 0.2902 | 0.1888 |
0.1142 | 21.44 | 30000 | 0.2854 | 0.1907 |
0.1168 | 21.66 | 30300 | 0.2918 | 0.1873 |
0.1168 | 21.87 | 30600 | 0.2897 | 0.1873 |
0.1105 | 22.09 | 30900 | 0.2951 | 0.1856 |
0.1134 | 22.3 | 31200 | 0.2842 | 0.1847 |
0.1111 | 22.52 | 31500 | 0.2884 | 0.1829 |
0.1088 | 22.73 | 31800 | 0.2991 | 0.1840 |
0.1139 | 22.94 | 32100 | 0.2876 | 0.1839 |
0.1078 | 23.16 | 32400 | 0.2899 | 0.1830 |
0.1087 | 23.37 | 32700 | 0.2927 | 0.1803 |
0.1076 | 23.59 | 33000 | 0.2924 | 0.1801 |
0.11 | 23.8 | 33300 | 0.2877 | 0.1804 |
0.1067 | 24.02 | 33600 | 0.2918 | 0.1799 |
0.1104 | 24.23 | 33900 | 0.2908 | 0.1809 |
0.1023 | 24.45 | 34200 | 0.2939 | 0.1807 |
0.0993 | 24.66 | 34500 | 0.2925 | 0.1802 |
0.1053 | 24.87 | 34800 | 0.2907 | 0.1804 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.8.1+cu111
- Datasets 2.2.1
- Tokenizers 0.12.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support