english-marathi-colloquial-translator1

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-mr on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5252

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
15.4233 0.3636 2 7.9121
13.0588 0.7273 4 7.9121
8.4646 1.0 6 7.9121
4.474 1.3636 8 3.3942
1.7662 1.7273 10 0.6550
0.7863 2.0 12 0.5941
1.1458 2.3636 14 0.5240
0.8619 2.7273 16 0.4977
0.7108 3.0 18 0.4929
0.8382 3.3636 20 0.4984
0.5416 3.7273 22 0.4854
0.2726 4.0 24 0.4787
0.4561 4.3636 26 0.4806
0.5203 4.7273 28 0.4890
0.233 5.0 30 0.4989
0.4509 5.3636 32 0.4978
0.3384 5.7273 34 0.4999
0.1781 6.0 36 0.5054
0.3225 6.3636 38 0.5101
0.2737 6.7273 40 0.5159
0.0695 7.0 42 0.5239
0.2417 7.3636 44 0.5263
0.3237 7.7273 46 0.5253
0.1458 8.0 48 0.5249
0.2153 8.3636 50 0.5252

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
75.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Waghya/english-marathi-colloquial-translator1

Finetuned
(7)
this model