File size: 2,640 Bytes
7e18ba0 4355082 7e18ba0 9251ccd 7e18ba0 306b310 7e18ba0 4355082 7e18ba0 306b310 7e18ba0 24fe7ca 4355082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
datasets:
- uoft-cs/cifar10
language:
- en
metrics:
- accuracy
base_model:
- jaeunglee/resnet18-cifar10-unlearning
tags:
- machine_unlearning
---
# Evaluation Report
## Testing Data
**Dataset**: CIFAR-10 Test Set
**Metrics**: Forget class accuracy(loss), Retain class accuracy(loss)
---
## Training Details
### Training Procedure
- **Base Model**: ResNet18
- **Dataset**: CIFAR-10
- **Excluded Class**: Varies by model
- **Loss Function**: Negative Log-Likelihood Loss
- **Optimizer**: SGD with:
- Learning rate: 0.01
- Momentum: 0.9
- Weight decay: 5e-4
- Nesterov: True
- **Training Epochs**: 20
- **Batch Size**: 256
- **Hardware**: Single GPU (NVIDIA GeForce RTX 3090)
### Selective Synapse Dampening Specifics
- **Lambda**: 1.0
- **Alpha**: 10.0
### Algorithm
The **SSD (Selective Synapse Dampening)** algorithm was used for inexact unlearning. This method selectively reduces the impact of a specific class on the model while preserving the performance on the remaining classes.
Each resulting model (`cifar10_resnet18_SSD_X.pth`) corresponds to a scenario where a single class (`X`) has been unlearned. SSD efficiently removes class-specific knowledge while maintaining robustness and generalizability.
For more details on the SSD algorithm, refer to the [GitHub repository](https://github.com/if-loops/selective-synaptic-dampening).
---
## Results
| Model | Forget Class | Forget class acc(loss) | Retain class acc(loss) |
|--------------------------------|--------------|-------------------------|-------------------------|
| cifar10_resnet18_SSD_0.pth | Airplane | 0.0 (8.102) | 83.38 (0.527) |
| cifar10_resnet18_SSD_1.pth | Automobile | 0.0 (6.550) | 94.62 (0.189) |
| cifar10_resnet18_SSD_2.pth | Bird | 0.0 (9.854) | 90.06 (0.328) |
| cifar10_resnet18_SSD_3.pth | Cat | 0.0 (8.428) | 90.00 (0.317) |
| cifar10_resnet18_SSD_4.pth | Deer | 0.0 (5.885) | 95.26 (0.161) |
| cifar10_resnet18_SSD_5.pth | Dog | 0.0 (6.917) | 12.53 (2.799) |
| cifar10_resnet18_SSD_6.pth | Frog | 0.0 (5.532) | 95.29 (0.156) |
| cifar10_resnet18_SSD_7.pth | Horse | 0.0 (7.328) | 17.71 (3.478) |
| cifar10_resnet18_SSD_8.pth | Ship | 0.0 (3.783) | 95.41 (0.158) |
| cifar10_resnet18_SSD_9.pth | Truck | 0.0 (5.864) | 94.29 (0.198) |
|