akhilfau's picture
Create README.md
c1fc40e verified
smollm2-360m-physics-gguf
**Author**: [Akhil Vallala](https://www.linkedin.com/in/akhil-fau)
**Base Model**: [`akhilfau/fine-tuned-smolLM2-360M-with-on-combined_Instruction_dataset`](https://huggingface.co/akhilfau/fine-tuned-smolLM2-360M-with-on-combined_Instruction_dataset)
**Architecture**: LLaMA (SmolLM2)
**Parameter count**: 362M
**Format**: GGUF (Q4_K_M, Q8_0, FP16)
**License**: Apache 2.0
**Model Type**: Instruction-tuned Small Language Model (SLM)
**Use Case**: Solving physics word problems on mobile devices
Model Overview
This GGUF model is a quantized version of the **Tiny-Physics** model, based on SmolLM2-360M and fine-tuned for **physics word problem solving** using both real and synthetic datasets. It is designed to deliver accurate, low-latency performance on **mobile and edge devices**.
Datasets Used
- ๐Ÿ“˜ **camel-ai/physics**: Publicly available dataset with 20,000+ physics QA pairs
- ๐Ÿ“˜ **Seed dataset**: Extracted from *1000 Solved Problems in Classical Physics*
- ๐Ÿง  **Synthetic dataset**: 6,279 rigorously validated question-answer pairs generated using a GPT-4o-based multi-agent system
These datasets were formatted for instruction tuning using structured promptโ€“response pairs.
Training Details
- **Model**: SmolLM2-360M
- **Fine-tuning**: Instruction fine-tuning with LoRA (Low-Rank Adaptation)
- **Libraries**: Hugging Face Transformers, TRL, Lighteval
- **Training Epochs**: 3 (best accuracy observed at 3โ€“5 epochs)
- **Fine-tuning Objective**: Maximize performance on MMLU College Physics
- **Best Model Accuracy**: `24.51%` on MMLU College Physics
Evaluation
**Evaluated with**: [Lighteval](https://github.com/huggingface/lighteval)
**Benchmark**: [MMLU College Physics](https://huggingface.co/datasets/hendrycks_test)
**Performance**:
| Dataset | Accuracy (SmolLM2-360M-Instruct) |
|-----------------------------|----------------------------------|
| MMLU: College Physics | 24.51% |
| Instruction-Tuned camel-ai | 25.49% |
| Combined Instruction Dataset| 24.51% |
GGUF Quantization
Model is provided in multiple quantization formats:
| Format | Size | Accuracy Retention | Inference Speed | RAM Usage | Target Use |
|----------|--------|--------------------|------------------|---------------|------------------------------------|
| `Q4_K_M` | ~271MB | ~95โ€“97% | Fast | ~600โ€“800MB | Ideal for mid-range mobile devices |
| `Q8_0` | ~386MB | ~99% | Medium | ~1โ€“1.5GB | Best for higher-end devices |
| `FP16` | ~800MB | 100% | Slow | ~2GB+ | Reference use only |
How to Use
```bash
# Using llama.cpp
./main -m smollm2-360m-physics-gguf.Q4_K_M.gguf -p "What is the acceleration of a 2kg mass falling from 5 meters?"
```
Or via `llama-cpp-python`:
```python
from llama_cpp import Llama
llm = Llama(model_path="smollm2-360m-physics-gguf.Q4_K_M.gguf")
output = llm("What is the potential energy of a 3kg object at 10 meters?")
```
Intended Use
- ๐Ÿ“š **Physics tutoring apps**
- ๐Ÿ“ถ **Offline mobile inference**
- ๐Ÿง‘โ€๐Ÿซ **Educational tools for conceptual reasoning**
- ๐Ÿ”‹ **Low-power deployment scenarios**
Limitations
- Not trained on multiple-choice formatted data (MCQ output mismatch possible)
- Topic imbalance in datasets may affect generalization
- Not suitable for non-physics or open-domain tasks
Carbon Footprint
Training and fine-tuning consumed approx. **2.64 kg COโ‚‚e**, equivalent to a ~7-mile car ride. This was achieved using local GPU resources (RTX A5500) and energy-efficient batch tuning with LoRA.
Citation
```bibtex
@misc{vallala2025tinyphysics,
title={Tiny-Physics: A Compact Large Language Model for Physics Word Problems on Mobile Devices},
author={Akhil Vallala},
year={2025},
howpublished={\url{https://huggingface.co/akhilfau/smollm2-360m-physics-gguf}},
}
```